تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Lehmer,s Phenomenon
المؤلف:
Csordas, G.; Smith, W.; and Varga, R. S.
المصدر:
"Lehmer Pairs of Zeros, the de Bruijn-Newman Constant and the Riemann Hypothesis." Constr. Approx
الجزء والصفحة:
...
9-9-2019
2777
Lehmer's Phenomenon
The appearance of nontrivial zeros (i.e., those along the critical strip with ) of the Riemann zeta function
very close together. An example is the pair of zeros
given by
and
, illustrated above in the plot of
. This corresponds to the region near Gram point
(Lehmer 1956; Edwards 2001, p. 178).
Let be the
th nontrivial root of
, and consider the local extrema of
. Then the values of
after which the absolute value of the local extremum between
and
decreases are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, ... (OEIS A114886).
REFERENCES:
Csordas, G.; Odlyzko, A. M.; Smith, W.; and Varga, R. S. "A New Lehmer Pair of Zeros and a New Lower Bound for the de Bruijn-Newman Constant." Elec. Trans. Numer. Analysis 1, 104-111, 1993.
Csordas, G.; Smith, W.; and Varga, R. S. "Lehmer Pairs of Zeros, the de Bruijn-Newman Constant and the Riemann Hypothesis." Constr. Approx. 10, 107-129, 1994.
Csordas, G.; Smith, W.; and Varga, R. S. "Lehmer Pairs of Zeros and the Riemann -Function." In Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics (Vancouver, BC, 1993). Proc. Sympos. Appl. Math. 48, 553-556, 1994.
Edwards, H. M. "Lehmer's Phenomenon." §8.3 in Riemann's Zeta Function. New York: Dover, pp. 175-179, 2001.
Lehmer, D. H. "On the Roots of the Riemann Zeta-Function." Acta Math. 95, 291-298, 1956.
Sloane, N. J. A. Sequence A114886 in "The On-Line Encyclopedia of Integer Sequences."
Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 357-358, 1991.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
