Voronin Universality Theorem
المؤلف:
Bagchi, B.
المصدر:
"Recurrence in Topological Dynamics and the Riemann Hypothesis." Acta Math. Hungar. 50,
الجزء والصفحة:
...
14-9-2019
3026
Voronin Universality Theorem
Voronin (1975) proved the remarkable analytical property of the Riemann zeta function
that, roughly speaking, any nonvanishing analytic function can be approximated uniformly by certain purely imaginary shifts of the zeta function in the critical strip.
More precisely, let
and suppose that
is a nonvanishing continuous function on the disk
that is analytic in the interior. Then for any
, there exists a positive real number
such that
Moreover, the set of these
has positive lower density, i.e.,
{tau in [0,T]:max_(|s|<=r)|zeta(s+3/4+itau)-g(s)|<epsilon}
>0. " src="http://mathworld.wolfram.com/images/equations/VoroninUniversalityTheorem/NumberedEquation2.gif" style="height:57px; width:342px" /> |
Garunkštis (2003) obtained explicit estimates for the first approximating
and the positive lower density, provided that
is sufficiently small and
sufficiently smooth. The condition that
have no zeros for
is necessary.
The Riemann hypothesis is known to be true iff
can approximate itself uniformly in the sense of Voronin's theorem (Bohr 1922, Bagchi 1987). It is also known that there exists a rich zoo of Dirichlet series having this or some similar universality property (Karatsuba 1992, Laurinčikas 1996, Matsumoto 2001).
REFERENCES:
Bagchi, B. "Recurrence in Topological Dynamics and the Riemann Hypothesis." Acta Math. Hungar. 50, 227-240, 1987.
Bohr, H. "Über eine Quasi-Periodische Eigenschaft Dirichletscher Reihen mit Anwendung auf die Dirichletschen
-Funktionen." Math. Ann. 85, 115-122, 1922.
Garunkštis, R. "The Effective Universality Theorem for the Riemann Zeta Function." Bonner math. Schriften 360, 2003.
Karatsuba, A. A. and Voronin, S. M. The Riemann Zeta-Function. Hawthorn, NY: de Gruyter, 1992.
Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function. Dordrecht, Netherlands: Kluwer, 1996.
Matsumoto, K. "Probabilistic Value-Distribution Theory of Zeta Functions." Sugaku 53, 279-296, 2001. Reprinted in Sugaku Expositions 17, 51-71, 2004.
Voronin, S. M. "Theorem on the Universality of the Riemann Zeta Function." Izv. Akad. Nauk SSSR, Ser. Matem. 39, 475-486, 1975. Reprinted in Math. USSR Izv. 9, 443-445, 1975.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة