المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

إطاعة القانون لا الفرد
25-7-2016
(Monomer (Emulsion polymerization
1-9-2016
الفائزون يوم القيامة
26-01-2015
سبب الجنابة
29-11-2016
تفاعل الجالكونات مع البروم
2024-10-01
التعريف بالبيع فوب
17-3-2016

Golden Rhombohedron  
  
774   05:33 مساءً   date: 17-2-2020
Author : Kabai, S.
Book or Source : Mathematical Graphics I: Lessons in Computer Graphics Using Mathematica. Püspökladány, Hungary: Uniconstant
Page and Part : ...


Read More
Date: 18-12-2019 1012
Date: 26-10-2020 1557
Date: 20-10-2019 824

Golden Rhombohedron

GoldenRhombohedra

A golden rhombohedron is a rhombohedron whose faces consist of congruent golden rhombi. Golden rhombohedra are therefore special cases of a trigonal trapezohedron as well as zonohedra.

There are two distinct golden rhombohedra: the acute golden rhombohedron and obtuse golden rhombohedron. Both are built from six golden rhombi and comprise two of the five golden isozonohedra. These polyhedra are implemented in the Wolfram Language as PolyhedronData["AcuteGoldenRhombohedron"] and PolyhedronData["ObtuseGoldenRhombohedron"], respectively.

The acute and obtuse golden rhombohedra with edge length a both have surface area

 S=(12)/5sqrt(5)a^2,

(1)

and have volumes

V_a = 1/5sqrt(10+2sqrt(5))a^3

(2)

V_o = 1/5sqrt(10-2sqrt(5))a^3,

(3)

respectively.


REFERENCES:

Kabai, S. Mathematical Graphics I: Lessons in Computer Graphics Using Mathematica. Püspökladány, Hungary: Uniconstant, pp. 169 and 171, 2002.

Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books, p. 206, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.