المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Khinchin,s Constant Continued Fraction  
  
628   03:58 مساءً   date: 18-2-2020
Author : Havermann, H.
Book or Source : "Simple Continued Fraction Expansion of Khinchin,s Constant." http://odo.ca/~haha/cfk.html.
Page and Part : ...


Read More
Date: 5-8-2020 845
Date: 10-3-2020 2678
Date: 17-2-2020 833

Khinchin's Constant Continued Fraction

Khinchin constant continued fraction binary plot

The continued fraction for K is [2; 1, 2, 5, 1, 1, 2, 1, 1, ...] (OEIS A002211). A plot of the first 256 terms of the continued fraction represented as a sequence of binary bits is shown above.

The convergents are 2, 3, 8/3, 43/16, 51/19, ... (OEIS A127005 and A127006).

The incrementally largest terms are 2, 5, 10, 24, 90, 770, ... (OEIS A054866), which occur at positions 0, 3, 10, 15, 23, 104, 1701, ... (OEIS A224852; illustrated above).

KhinchinsConstantContinuedFractionFirstOccurrences

The plot above shows the positions of the first occurrences of 1, 2, 3, ... in the continued fraction, the first few of which are 1, 0, 9, 46, 3, 33, 75, 64, 118, 10, 103, 26, 102, 109, ... (OEIS A224851). The smallest number not occurring in the first 106621 terms of the continued fraction are 236, 260, 265, 279, 282, ... (E. Weisstein, Jul. 22, 2013).


REFERENCES:

Havermann, H. "Simple Continued Fraction Expansion of Khinchin's Constant." http://odo.ca/~haha/cfk.html.

Sloane, N. J. A. Sequences A002211/M1564, A054866, A127005, A127006, A224851, and A224852 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.