Read More
Date: 3-11-2019
![]()
Date: 19-1-2021
![]()
Date: 13-1-2021
![]() |
The transformation of a sequence
into a sequence
by the formula
![]() |
(1) |
where is a Stirling number of the second kind. The inverse transform is given by
![]() |
(2) |
where is a Stirling number of the first kind (Sloane and Plouffe 1995, p. 23).
The following table summarized Stirling transforms for some common sequences, where denotes the Iverson bracket and
denotes the primes.
![]() |
OEIS | ![]() |
1 | A000110 | 1, 1, 2, 5, 15, 52, 203, ... |
![]() |
A005493 | 0, 1, 3, 10, 37, 151, 674, ... |
![]() |
A000110 | 1, 2, 5, 15, 52, 203, 877, ... |
![]() |
A085507 | 0, 0, 1, 4, 13, 41, 136, 505, ... |
![]() |
A024430 | 1, 0, 1, 3, 8, 25, 97, 434, 2095, ... |
![]() |
A024429 | 0, 1, 1, 2, 7, 27, 106, 443, ... |
![]() |
A033999 | 1, ![]() ![]() ![]() |
Here, gives the Bell numbers.
has the exponential generating function
![]() |
(3) |
REFERENCES:
Bernstein, M. and Sloane, N. J. A. "Some Canonical Sequences of Integers." Linear Algebra Appl. 226-228, 57-72, 1995.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Factorial Factors." §4.4 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, p. 252, 1994.
Riordan, J. Combinatorial Identities. New York: Wiley, p. 90, 1979.
Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley, p. 48, 1980.
Sloane, N. J. A. Sequences A000110/M1483, A005493/M2851, A024429, A024430, A033999, A052437, and A085507 in "The On-Line Encyclopedia of Integer Sequences."
Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.
|
|
دراسة: حفنة من الجوز يوميا تحميك من سرطان القولون
|
|
|
|
|
تنشيط أول مفاعل ملح منصهر يستعمل الثوريوم في العالم.. سباق "الأرنب والسلحفاة"
|
|
|
|
|
لتعزيز التواصل مع الزائرات الأجنبيات : العتبة العلويّة المقدّسة تُطلق دورة لتعليم اللغة الإنجليزية لخادمات القسم النسويّ
|
|
|