تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Firing Squad Problem
المؤلف:
Moore, E. F
المصدر:
Sequential Machines: Selected Papers. Reading, MA: Addison-Wesley
الجزء والصفحة:
...
22-8-2021
1547
Firing Squad Problem
By choosing appropriate rules, it is possible to achieve many forms of synchronization within cellular automata. One version, known as the firing squad synchronization problem, was introduced by J. Myhill in 1957, although the first published reference did not appear until five years later (Moore 1962). The firing squad synchronization problem seeks to determine a rule in which all cells in a region go into a special state after the same number of steps. The problem was first solved by Moore (1962). A solution using six colors and a minimal number of steps, illustrated above, was subsequently discovered by Mazoyer (1988), who also determined that no similar four-color solutions exist (Wolfram 2002, p. 1035).
REFERENCES:
Mazoyer, J. "An Overview of the Firing Squad Synchronization Problem." In Automata Networks: Proceedings of the Fourteenth LITP Spring School on Theoretical Computer Science held in Argelès-Village, May 12-16, 1986 (Ed. C. Choffrut). Berlin: Springer-Verlag, pp. 82-94, 1988.
Moore, E. F. Sequential Machines: Selected Papers. Reading, MA: Addison-Wesley, pp. 213-214, 1962.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1035, 2002.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
