المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الاسطرلاب
2025-01-12
ظهور التلسكوبات
2025-01-12
آثار فسخ عقد الزواج بعد الدخول بالنسبة للنفقة في قانون الاحوال الشخصية الكويتي
2025-01-12
نضج وحصاد وتخزين البسلة
2025-01-12
مقبرة (شيشنق الثالث)
2025-01-12
الفرعون شيشنق الرابع وآثاره
2025-01-12

معنى كلمة شرك
13/11/2022
كاميرات السينسر الكامل Full Frame Camera
8-12-2021
وصية الباقر (عليه السلام) لجابر بن يزيد الجعفي
15-10-2015
Phrases
5-8-2022
نبات الهيدرا
2024-07-10
هل قاعدة « لا حرج » تعم الحكم الوضعي أيضا ؟
15/9/2022

Elementary Cellular Automaton  
  
1419   05:42 مساءً   date: 22-8-2021
Author : Rangel-Mondragon, J.
Book or Source : "A Catalog of Cellular Automata." https://library.wolfram.com/infocenter/MathSource/505/.
Page and Part : ...


Read More
Date: 6-1-2016 1559
Date: 4-10-2021 1294
Date: 5-11-2021 1036

Elementary Cellular Automaton

 

ElementaryCA30Rules

The simplest class of one-dimensional cellular automata. Elementary cellular automata have two possible values for each cell (0 or 1), and rules that depend only on nearest neighbor values. As a result, the evolution of an elementary cellular automaton can completely be described by a table specifying the state a given cell will have in the next generation based on the value of the cell to its left, the value the cell itself, and the value of the cell to its right. Since there are 2×2×2=2^3=8 possible binary states for the three cells neighboring a given cell, there are a total of 2^8=256 elementary cellular automata, each of which can be indexed with an 8-bit binary number (Wolfram 1983, 2002). For example, the table giving the evolution of rule 30 (30=00011110_2) is illustrated above. In this diagram, the possible values of the three neighboring cells are shown in the top row of each panel, and the resulting value the central cell takes in the next generation is shown below in the center. n generations of elementary cellular automaton rule r are implemented as CellularAutomaton[r{{1}, 0}n].

ElementaryCA30

The evolution of a one-dimensional cellular automaton can be illustrated by starting with the initial state (generation zero) in the first row, the first generation on the second row, and so on. For example, the figure above illustrated the first 20 generations of the rule 30 elementary cellular automaton starting with a single black cell.

ElementaryCARulesElementaryCA

The illustrations above show some automata numbers that give particularly interesting pattern propagated for 15 generations starting with a single black cell in the initial iteration. Rule 30 is of special interest because it is chaotic (Wolfram 2002, p. 871), with central column given by 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, ... (OEIS A051023). In fact, this rule is used as the random number generator used for large integers in the Wolfram Language (Wolfram 2002, p. 317).

The complete set of 256 (rules 0-255) elementary cellular automata are illustrated below for a starting condition consisting of a single black cell.

ElementaryCA1ElementaryCA2ElementaryCA3ElementaryCA4ElementaryCA5

Of the 2^8=256 elementary cellular automata, there are 88 fundamentally inequivalent rules (Wolfram 2002, p. 57).

The amphichiral elementary cellular automata are 0, 1, 4, 5, 18, 19, 22, 23, 32, 33, 36, 37, 50, 51, 54, 55, 72, 73, 76, 77, 90, 91, 94, 95, 104, 105, 108, 109, 122, 123, 126, 127, 128, 129, 132, 133, 146, 147, 150, 151, 160, 161, 164, 165, 178, 179, 182, 183, 200, 201, 204, 205, 218, 219, 222, 223, 232, 233, 236, 237, 250, 251, 254, and 255.


REFERENCES:

 Rangel-Mondragon, J. "A Catalog of Cellular Automata." https://library.wolfram.com/infocenter/MathSource/505/.

Sloane, N. J. A. Sequence A051023 in "The On-Line Encyclopedia of Integer Sequences."

Wolfram, S. "Statistical Mechanics of Cellular Automata." Rev. Mod. Phys. 55, 601-644, 1983.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 23-60, 112, and 865-866, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.