تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Elementary Cellular Automaton
المؤلف:
Rangel-Mondragon, J.
المصدر:
"A Catalog of Cellular Automata." https://library.wolfram.com/infocenter/MathSource/505/.
الجزء والصفحة:
...
22-8-2021
1671
Elementary Cellular Automaton
The simplest class of one-dimensional cellular automata. Elementary cellular automata have two possible values for each cell (0 or 1), and rules that depend only on nearest neighbor values. As a result, the evolution of an elementary cellular automaton can completely be described by a table specifying the state a given cell will have in the next generation based on the value of the cell to its left, the value the cell itself, and the value of the cell to its right. Since there are possible binary states for the three cells neighboring a given cell, there are a total of
elementary cellular automata, each of which can be indexed with an 8-bit binary number (Wolfram 1983, 2002). For example, the table giving the evolution of rule 30 (
) is illustrated above. In this diagram, the possible values of the three neighboring cells are shown in the top row of each panel, and the resulting value the central cell takes in the next generation is shown below in the center.
generations of elementary cellular automaton rule
are implemented as CellularAutomaton[r,
{" src="https://mathworld.wolfram.com/images/equations/ElementaryCellularAutomaton/Inline6.gif" style="height:15px; width:5px" />
{" src="https://mathworld.wolfram.com/images/equations/ElementaryCellularAutomaton/Inline7.gif" style="height:15px; width:5px" />1
}" src="https://mathworld.wolfram.com/images/equations/ElementaryCellularAutomaton/Inline8.gif" style="height:15px; width:5px" />, 0
}" src="https://mathworld.wolfram.com/images/equations/ElementaryCellularAutomaton/Inline9.gif" style="height:15px; width:5px" />, n].
The evolution of a one-dimensional cellular automaton can be illustrated by starting with the initial state (generation zero) in the first row, the first generation on the second row, and so on. For example, the figure above illustrated the first 20 generations of the rule 30 elementary cellular automaton starting with a single black cell.
The illustrations above show some automata numbers that give particularly interesting pattern propagated for 15 generations starting with a single black cell in the initial iteration. Rule 30 is of special interest because it is chaotic (Wolfram 2002, p. 871), with central column given by 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, ... (OEIS A051023). In fact, this rule is used as the random number generator used for large integers in the Wolfram Language (Wolfram 2002, p. 317).
The complete set of 256 (rules 0-255) elementary cellular automata are illustrated below for a starting condition consisting of a single black cell.
Of the elementary cellular automata, there are 88 fundamentally inequivalent rules (Wolfram 2002, p. 57).
The amphichiral elementary cellular automata are 0, 1, 4, 5, 18, 19, 22, 23, 32, 33, 36, 37, 50, 51, 54, 55, 72, 73, 76, 77, 90, 91, 94, 95, 104, 105, 108, 109, 122, 123, 126, 127, 128, 129, 132, 133, 146, 147, 150, 151, 160, 161, 164, 165, 178, 179, 182, 183, 200, 201, 204, 205, 218, 219, 222, 223, 232, 233, 236, 237, 250, 251, 254, and 255.
REFERENCES:
Rangel-Mondragon, J. "A Catalog of Cellular Automata." https://library.wolfram.com/infocenter/MathSource/505/.
Sloane, N. J. A. Sequence A051023 in "The On-Line Encyclopedia of Integer Sequences."
Wolfram, S. "Statistical Mechanics of Cellular Automata." Rev. Mod. Phys. 55, 601-644, 1983.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 23-60, 112, and 865-866, 2002.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
