المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Rule 102  
  
1267   04:08 مساءً   date: 25-8-2021
Author : Sloane, N. J. A.
Book or Source : Sequences A001317/M2495, A047999, A075439, and A117998 in "The On-Line Encyclopedia of Integer Sequences."
Page and Part : ...


Read More
Date: 29-9-2021 1766
Date: 25-8-2021 1443
Date: 15-10-2021 1159

Rule 102

ElementaryCARule102

Rule 102 is one of the elementary cellular automaton rules introduced by Stephen Wolfram in 1983 (Wolfram 1983, 2002). It specifies the next color in a cell, depending on its color and its immediate neighbors. Its rule outcomes are encoded in the binary representation 102=01100110_2. This rule is illustrated above together with the evolution of a single black cell it produces after 15 steps (OEIS A075439; Wolfram 2002, p. 55).

Starting with a single black cell, successive generations are given by interpreting the numbers 1, 6, 20, 120, 272, 1632, 5440, 32640, ... (OEIS A117998) in binary. Omitting trailing zeros (the right n cells in step n of the triangle are always 0) gives 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, ... (OEIS A001317), which are simply the previous numbers divided by 2^n and which have binary representation 1, 11; 101, 1111, 10001, ... (OEIS A047999). Surprisingly, this is precisely the Sierpiński sieve.

The mirror image is rule 60, the complement is rule 153, and the mirrored complement is rule 195.

Rule 102 animation

Rule 102 is one of the eight additive elementary cellular automata (Wolfram 2002, p. 953).


REFERENCES:

Sloane, N. J. A. Sequences A001317/M2495, A047999, A075439, and A117998 in "The On-Line Encyclopedia of Integer Sequences."

Wolfram, S. "Statistical Mechanics of Cellular Automata." Rev. Mod. Phys. 55, 601-644, 1983.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 55, 90, and 953, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.