المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة
علاقات مصر ببلاد النوبة في عهد ثقافة المجموعة B ثقافة المجموعة B في بلاد النوبة علاقة مصر ببلاد النوبة في العصر الطيني(1). المجموعة الثقافية A (رقم 2) وتقابل في التاريخ المصري العصر الأسري المبكر بلاد النوبة (المجموعة A الثقافية رقم 1) خلايا الليثيوم أيون مجموعة البطارية Lithium lon Cells and Battery packs بدء الخلاف في حضارة القطرين موازنة الخلية في بطارية الليثيوم ايون الخطوط العامة في إطالة عمر بطارية الليثيوم أيون Guidelines for prolonging Li-ion battery life تحسينات في تكنولوجيا بطاريات الليثيوم أيون Improvements to Lithium lon Battery Technology المواصفات والتصميم لبطاريات ايون الليثيوم إطالة عمر الخلايا المتعددة في بطارية الليثيوم ايون من خلال موازنة الخلية Prolonging Life in Multiple Cells Through Cell balancing السلامة في بطارية الليثيوم ايون محاذير وتنبيهات الخاصة ببطارية الليثيوم-ايون ما ورد في شأن الرسول الأعظم والنبيّ الأكرم سيّدنا ونبيّنا محمّد (صلى الله عليه وآله) / القسم السادس والعشرون

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Rule 90  
  
1459   06:44 مساءً   date: 25-8-2021
Author : Guy, R. K.
Book or Source : "The Second Strong Law of Small Numbers." Math. Mag. 63
Page and Part : ...


Read More
Date: 28-11-2021 931
Date: 12-9-2021 2038
Date: 12-10-2021 1424

Rule 90

ElementaryCARule090

Rule 90 is one of the elementary cellular automaton rules introduced by Stephen Wolfram in 1983 (Wolfram 1983, 2002). It specifies the next color in a cell, depending on its color and its immediate neighbors. Its rule outcomes are encoded in the binary representation 90=01011010_2. This rule is illustrated above together with the evolution of a single black cell it produces after 15 steps (Wolfram 2002, p. 55).

Starting with a single black cell, successive generations are given by interpreting the numbers 1, 5, 17, 85, 257, 1285, 4369, 21845, ... (OEIS A038183) in binary, namely as 1, 101, 10001, 1010101, 100000001, ... (OEIS A070886).

Rule 90 is amphichiral, and its complement is rule 165.

SierpinskiSievePascal

The fractal produced by this rule was described by Sierpiński in 1915 and appearing in Italian art from the 13th century (Wolfram 2002, p. 43). It is therefore also known as the Sierpiński sieve, Sierpiński gasket, or Sierpiński triangle. The binomial coefficient (m; n) mod 2 can be computed using the XOR operation n XOR m, making Pascal's triangle mod 2 very easy to construct. Moreover, coloring all odd numbers black and even numbers white in Pascal's triangle produces a Sierpiński sieve (Guy 1990; Wolfram 2002, p. 870).

Rule 90 animation

Rule 90 is one of the eight additive elementary cellular automata (Wolfram 2002, p. 952).


REFERENCES:

Guy, R. K. "The Second Strong Law of Small Numbers." Math. Mag. 63, 3-20, 1990.

Sloane, N. J. A. Sequences A038183 and A070886 in "The On-Line Encyclopedia of Integer Sequences."

Wolfram, S. "Statistical Mechanics of Cellular Automata." Rev. Mod. Phys. 55, 601-644, 1983.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 90, 55, 870, and 952, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.