المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12


Barnsley,s Fern  
  
1980   05:23 مساءً   date: 12-9-2021
Author : Barnsley, M.
Book or Source : Fractals Everywhere, 2nd ed. Boston, MA: Academic Press
Page and Part : ...


Read More
Date: 24-11-2021 1251
Date: 1-9-2021 2443
Date: 4-10-2021 1317

Barnsley's Fern

BarnsleysFern

The attractor of the iterated function system given by the set of "fern functions"

f_1(x,y) = [0.85 0.04; -0.04 0.85][x; y]+[0.00; 1.60]

(1)

f_2(x,y) = [-0.15 0.28; 0.26 0.24][x; y]+[0.00; 0.44]

(2)

f_3(x,y) = [0.20 -0.26; 0.23 0.22][x; y]+[0.00; 1.60]

(3)

f_4(x,y) = [0.00 0.00; 0.00 0.16][x; y]

(4)

(Barnsley 1993, p. 86; Wagon 1991). These affine transformations are contractions. The tip of the fern (which resembles the black spleenwort variety of fern) is the fixed point of f_1, and the tips of the lowest two branches are the images of the main tip under f_2 and f_3 (Wagon 1991).


REFERENCES:

Barnsley, M. Fractals Everywhere, 2nd ed. Boston, MA: Academic Press, pp. 86, 90, 102 and Plate 2, 1993.

Gleick, J. Chaos: Making a New Science. New York: Penguin Books, p. 238, 1988.

Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 46, 55, and 87, 1999.

Wagon, S. "Biasing the Chaos Game: Barnsley's Fern." §5.3 in Mathematica in Action. New York: W. H. Freeman, pp. 156-163, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.