تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Dynamical System
المؤلف:
Aoki, N. and Hiraide, K
المصدر:
Topological Theory of Dynamical Systems. Amsterdam, Netherlands: North-Holland, 1994.
الجزء والصفحة:
...
7-10-2021
1123
Dynamical System
A means of describing how one state develops into another state over the course of time. Technically, a dynamical system is a smooth action of the reals or the integers on another object (usually a manifold). When the reals are acting, the system is called a continuous dynamical system, and when the integers are acting, the system is called a discrete dynamical system. If is any continuous function, then the evolution of a variable
can be given by the formula
![]() |
(1) |
This equation can also be viewed as a difference equation
![]() |
(2) |
so defining
![]() |
(3) |
gives
![]() |
(4) |
which can be read "as changes by 1 unit,
changes by
." This is the discrete analog of the differential equation
![]() |
(5) |
REFERENCES:
Aoki, N. and Hiraide, K. Topological Theory of Dynamical Systems. Amsterdam, Netherlands: North-Holland, 1994.
Golubitsky, M. Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer-Verlag, 1997.
Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed. New York: Springer-Verlag, 1997.
Jordan, D. W. and Smith, P. Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, 3rd ed. Oxford, England: Oxford University Press, 1999.
Lichtenberg, A. and Lieberman, M. Regular and Stochastic Motion, 2nd ed. New York: Springer-Verlag, 1994.
Ott, E. Chaos in Dynamical Systems. New York: Cambridge University Press, 1993.
Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, 1990.
Strogatz, S. H. Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Addison-Wesley, 1994.
Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, 1989.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
