 
					
					
						Dynamical System					
				 
				
					
						 المؤلف:  
						Aoki, N. and Hiraide, K
						 المؤلف:  
						Aoki, N. and Hiraide, K					
					
						 المصدر:  
						 Topological Theory of Dynamical Systems. Amsterdam, Netherlands: North-Holland, 1994.
						 المصدر:  
						 Topological Theory of Dynamical Systems. Amsterdam, Netherlands: North-Holland, 1994.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 7-10-2021
						7-10-2021
					
					
						 1297
						1297					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Dynamical System
A means of describing how one state develops into another state over the course of time. Technically, a dynamical system is a smooth action of the reals or the integers on another object (usually a manifold). When the reals are acting, the system is called a continuous dynamical system, and when the integers are acting, the system is called a discrete dynamical system. If  is any continuous function, then the evolution of a variable
 is any continuous function, then the evolution of a variable  can be given by the formula
 can be given by the formula
	
		
			|  | (1) | 
	
This equation can also be viewed as a difference equation
	
		
			|  | (2) | 
	
so defining
	
		
			|  | (3) | 
	
gives
	
		
			|  | (4) | 
	
which can be read "as  changes by 1 unit,
 changes by 1 unit,  changes by
 changes by  ." This is the discrete analog of the differential equation
." This is the discrete analog of the differential equation
	
		
			|  | (5) | 
	
REFERENCES:
Aoki, N. and Hiraide, K. Topological Theory of Dynamical Systems. Amsterdam, Netherlands: North-Holland, 1994.
Golubitsky, M. Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer-Verlag, 1997.
Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed. New York: Springer-Verlag, 1997.
Jordan, D. W. and Smith, P. Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, 3rd ed. Oxford, England: Oxford University Press, 1999.
Lichtenberg, A. and Lieberman, M. Regular and Stochastic Motion, 2nd ed. New York: Springer-Verlag, 1994.
Ott, E. Chaos in Dynamical Systems. New York: Cambridge University Press, 1993.
Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, 1990.
Strogatz, S. H. Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Addison-Wesley, 1994.
Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, 1989.
				
				
					
					 الاكثر قراءة في  الرياضيات التطبيقية
					 الاكثر قراءة في  الرياضيات التطبيقية 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة