Read More
Date: 5-1-2016
3561
Date: 18-9-2021
1099
Date: 19-11-2021
1769
|
Consider the general system of two first-order ordinary differential equations
(1) |
|||
(2) |
Let and denote fixed points with , so
(3) |
|||
(4) |
Then expand about so
(5) |
|||
(6) |
To first-order, this gives
(7) |
where the matrix is called the stability matrix.
In general, given an -dimensional map , let be a fixed point, so that
(8) |
Expand about the fixed point,
(9) |
|||
(10) |
so
(11) |
The map can be transformed into the principal axis frame by finding the eigenvectors and eigenvalues of the matrix
(12) |
so the determinant
(13) |
The mapping is
(14) |
When iterated a large number of times, only if for all , but if any . Analysis of the eigenvalues (and eigenvectors) of therefore characterizes the type of fixed point.
REFERENCES:
Tabor, M. "Linear Stability Analysis." §1.4 in Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, pp. 20-31, 1989.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|