المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
طرق تكاثر وزراعة الفول الرومي
2025-01-13
Mediators of Inflammation and the Interferons
2025-01-13
Formation of Bone
2025-01-13
جنس Aspergillus
2025-01-13
أشباه الجزر الجنوبية
2025-01-13
المناخ والغطاء النباتي
2025-01-13

تحضير 12،10-دوكوساداياين-22،1-ثنائي هيدرازيد Synthesis of 10,12-docosadiyn-1,22-dihydrazide
2024-03-10
المعاينة
2-3-2017
مميزة التوصيل بباعث مشترك
17-9-2021
أحمد بن محمد باقر البهبهاني.
26-7-2016
معجزة رزق الفقير ببركة السجاد
11-04-2015
Noticeable Odor
6-9-2020

Finite Volume Method  
  
1159   03:37 مساءً   date: 13-10-2021
Author : Hyman, J. M.; Knapp, R.; and Scovel, J. C
Book or Source : "High Order Finite Volume Approximations of Differential Operators on Nonuniform Grids." Physica D 60
Page and Part : ...


Read More
Date: 5-11-2021 1039
Date: 26-8-2021 1449
Date: 25-8-2021 1589

Finite Volume Method

The finite volume method is a numerical method for solving partial differential equations that calculates the values of the conserved variables averaged across the volume. One advantage of the finite volume method over finite difference methods is that it does not require a structured mesh (although a structured mesh can also be used). Furthermore, the finite volume method is preferable to other methods as a result of the fact that boundary conditions can be applied noninvasively. This is true because the values of the conserved variables are located within the volume element, and not at nodes or surfaces. Finite volume methods are especially powerful on coarse nonuniform grids and in calculations where the mesh moves to track interfaces or shocks.

Hyman et al. (1992) have derived local, accurate, reliable, and efficient finite volume methods that mimic symmetry, conservation, stability, and the duality relationships between the gradient, curl, and divergence operators on nonuniform rectangular and cuboid grids.


REFERENCES:

Hyman, J. M.; Knapp, R.; and Scovel, J. C. "High Order Finite Volume Approximations of Differential Operators on Nonuniform Grids." Physica D 60, 112-138, 1992.

Rübenkönig, O. "The Finite Volume Method (FVM)." http://www.imtek.uni-freiburg.de/simulation/mathematica/imsReferencePointers/FVM_introDocu.htm.

Versteeg, H. K. and Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Reading, MA: Addison-Wesley, 1995.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.