Read More
Date: 1-12-2021
2648
Date: 13-9-2021
1350
Date: 14-2-2016
1353
|
In a game proposed by J. H. Conway, a devil chases an angel on an infinite chessboard. At each move, the devil can eliminate one of the squares, and the angel can make a leap in any direction, covering a distance of at most squares. Here, is a positive integer previously fixed, and is called the "power" of the angel. The devil's aim is to trap the angel on an island surrounded by a hole of width at least .
Can the angel indefinitely escape the devil, if his power is sufficiently high? Can the devil defeat an angel of any finite power? In 2006, Brian Bowditch proved that the 4-angel can win. Later that year, András Máthé proved the 2-angel will win, completely solving the problem.
REFERENCES:
Conway, J. "The Angel Problem." In Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, July, 1994 (Ed. R. J. Nowakowski.) Cambridge, England: Cambridge University Press, pp. 3-12, 1996. http://www.msri.org/publications/books/Book29/files/conway.pdf.
|
|
بـ3 خطوات بسيطة.. كيف تحقق الجسم المثالي؟
|
|
|
|
|
دماغك يكشف أسرارك..علماء يتنبأون بمفاجآتك قبل أن تشعر بها!
|
|
|
|
|
العتبة العباسية المقدسة تواصل إقامة مجالس العزاء بذكرى شهادة الإمام الكاظم (عليه السلام)
|
|
|