

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Interior Point Method
المؤلف:
Forsgren, A.; Gill, P. E.; and Wright, M. H
المصدر:
"Interior Methods for Nonlinear Optimization." SIAM Rev. 44
الجزء والصفحة:
...
16-12-2021
1187
Interior Point Method
An interior point method is a linear or nonlinear programming method (Forsgren et al. 2002) that achieves optimization by going through the middle of the solid defined by the problem rather than around its surface.
A polynomial time linear programming algorithm using an interior point method was found by Karmarkar (1984). Arguably, interior point methods were known as early as the 1960s in the form of the barrier function methods, but the media hype accompanying Karmarkar's announcement led to these methods receiving a great deal of attention. However, it should be noted that while Karmarkar claimed that his implementation was much more efficient than the simplex method, the potential of interior point method was established only later. By 1994, there were more than 1300 published papers on interior point methods.
Current efficient implementations are mostly based on a predictor-corrector technique (Mehrotra 1992), where the Cholesky decomposition of the normal equation or
factorization of the symmetric indefinite system augmented system is used to perform Newton's method (together with some heuristics to estimate the penalty parameter). All current interior point methods implementations rely heavily on very efficient code for factoring sparse symmetric matrices.
REFERENCES:
Forsgren, A.; Gill, P. E.; and Wright, M. H. "Interior Methods for Nonlinear Optimization." SIAM Rev. 44, 525-597, 2002.
Karmarkar, N. "A New Polynomial-Time Algorithm for Linear Programming." Combinatorica 4, 373-395, 1984.
Lustig, I. J.; Marsten, R. E.; and Shanno, D. F. "Computational Experience with a Primal-Dual Interior Point Method for Linear Programming." Linear Alg. Appl. 152, 191-222, 1991.
Mehrotra, S. "On the Implementation of a Primal-Dual Interior Point Method." SIAM J. Optimization 2, 575-601, 1992.
Wright, S. J. Primal-Dual Interior-Point Methods. Philadelphia, PA: SIAM, 1997.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)