تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Operations Research
المؤلف:
Bazaraa, M. S.; Sherali, H. D.; and Shetty, C. M
المصدر:
Nonlinear Programming: Theory and Algorithms. New York: Wiley, 1993.
الجزء والصفحة:
...
19-12-2021
2508
Operations Research
Operations research is a vast branch of mathematics which encompasses many diverse areas of minimization and optimization. Thousands of books have been written worldwide on the subject of operations research.
The central objective of operations research is optimization, i.e., "to do things best under the given circumstances." This general concept has great many applications, for instance, in agricultural planning, biotechnology, data analysis, distribution of goods and resources, emergency and rescue operations, engineering systems design, environmental management, financial planning, health care management, inventory control, manpower and resource allocation, manufacturing of goods, military operations, production process control, risk management, sequencing and scheduling of tasks, telecommunications, and traffic control.
Closely related disciplines (with significant overlaps among these) include decision analysis, systems analysis, management science, control theory, game theory, optimization theory, constraint logic programming, artificial intelligence, fuzzy decision-making, multi-criteria analysis, and so on. All these disciplines share the objective of improving a quantitative decision making procedure. The same comment applies to operations research-related business applications such as supply-chain management, enterprise resource planning, total quality management, just-in-time production and inventory management, and materials requirements planning.
Following the general optimization paradigm, when applying operations research, a decision-maker selects the key decision variables that will influence the overall quality of decisions. This quality is expressed by the objective function that is maximized (profit, product quality, speed of service or job completion, and so on), or minimized (cost, loss, risk of some undesirable event, etc.). In addition to the objective function, a set of (physical, technical, economic, environmental, legal, societal, etc.) constraints is also considered. Then, by systematically adjusting the values of all decision variables, a "good" (feasible) or "very best" (optimal) solution is selected. Of course, feasibility and optimality can only be defined in the context of the given problem (model) formulation.
REFERENCES:
Bazaraa, M. S.; Sherali, H. D.; and Shetty, C. M. Nonlinear Programming: Theory and Algorithms. New York: Wiley, 1993.
Bertsekas, D. P. Nonlinear Programming, 2nd ed. Cambridge, MA: Athena Scientific, 1999.
Bronson, R. Schaum's Outline of Theory and Problems of Operations Research. New York: McGraw-Hill, 1982.
Chong, E. K. P. and Zak, S. H. An Introduction to Optimization, 2nd ed. New York: Wiley, 2001.
Edgar, T. F.; Himmelblau, D. M.; and Lasdon, L. S. Optimization of Chemical Processes, 2nd ed. New York: McGraw-Hill, 2001.
Horst, R. and Pardalos, P. M. (Eds.). Handbook of Global Optimization, Vol. 1. Dordrecht, Netherlands: Kluwer, 1995.
Hillier, F. S. and Lieberman, G. J. Introduction to Operations Research, 8th ed. New York: McGraw-Hill, 1990.
INFORMS. Operations Research: 50th Anniversary Issue. Linthicum, MD, 2002.
Marlow, W. H. Mathematics for Operations Research. New York: Dover, 1993.
Pardalos, P. M. and Resende, M. G. C. (Eds.). Handbook of Applied Optimization. Oxford, England: Oxford University Press, 2002.
Pardalos, P. M. and Romeijn, H. E. (Eds.). Handbook of Global Optimization, Vol. 2. Dordrecht, Netherlands: Kluwer, 2002.
Pintér, J. D. Global Optimization in Action. Dordrecht, Netherlands: Kluwer, 1996.
Pintér, J. D. Computational Global Optimization in Nonlinear Systems: An Interactive Tutorial. Atlanta, GA: Lionheart Publishing, 2001.
Pintér, J. D. Applied Nonlinear Optimization in Modeling Environments: Using Integrated Modeling and Solver Environments. Boca Raton, FL: CRC Press, 2005.
Sethi, S. P. and Thompson, G. L. Optimal Control Theory: Applications to Management Science and Economics. Dordrecht, Netherlands: Kluwer, 2000.
Singh, J. Great Ideas of Operations Research. New York: Dover, 1972.
Trick, M. "Michael Trick's Operations Research Page." http://mat.gsia.cmu.edu.
Weisstein, E. W. "Books about Operations Research." http://www.ericweisstein.com/encyclopedias/books/OperationsResearch.html.
Williams, H. P. Model Building in Mathematical Programming, 4th ed. New York: Wiley, 1999.
Winston, W. L. and Albright, S. C. Practical Management Science, 2nd ed. Pacific Grove, CA: Duxbury Press, 2001.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
