المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12


Population Growth  
  
1788   05:30 مساءً   date: 22-12-2021
Author : Steinhaus, H
Book or Source : Mathematical Snapshots, 3rd ed. New York: Dover
Page and Part : pp. 290-295


Read More
Date: 2-10-2021 1315
Date: 19-11-2021 2700
Date: 17-11-2021 1183

Population Growth

The differential equation describing exponential growth is

 (dN)/(dt)=rN.

(1)

This can be integrated directly

 int_(N_0)^N(dN)/N=int_0^trdt

(2)

to give

 ln(N/(N_0))=rt,

(3)

where N_0=N(t=0). Exponentiating,

 N(t)=N_0e^(rt).

(4)

This equation is called the law of growth and, in a much more antiquated fashion, the Malthusian equation; the quantity r in this equation is sometimes known as the Malthusian parameter.

Consider a more complicated growth law

 (dN)/(dt)=((rt-1)/t)N,

(5)

where r>1 is a constant. This can also be integrated directly

 (dN)/N=(r-1/t)dt

(6)

 lnN=rt-lnt+C

(7)

 N(t)=(Ce^(rt))/t.

(8)

Note that this expression blows up at t=0. We are given the initial condition that N(t=1)=N_0e^r, so C=N_0.

 N(t)=N_0(e^(rt))/t.

(9)

The t in the denominator of (◇) greatly suppresses the growth in the long run compared to the simple growth law.

The (continuous) logistic equation, defined by

 (dN)/(dt)=(rN(K-N))/K

(10)

is another growth law which frequently arises in biology. It has solution

 N(t)=K/(1+(K/(N_0)-1)e^(-rt)).

(11)


REFERENCES:

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 290-295, 1999.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.