Read More
Date: 11-1-2022
1081
Date: 26-12-2021
1387
Date: 27-12-2021
685
|
Let be a nontrivial bounded lattice (or a nontrivial complemented lattice, etc.). If every nonconstant lattice homomorphism defined on is -separating, then is a -simple lattice.
One can show that the following are equivalent for a nontrivial bounded lattice :
1. The lattice is -simple;
2. There is a largest nontrivial congruence of , and satisfies both and .
This result is useful in the study of congruence lattices of finite algebras.
REFERENCES:
Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.
Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.
Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|