المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10731 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

تفسير آية (39) من سورة النساء
10-2-2017
أساليب التصوير- خلق التوتر
23/9/2022
التمييز بين العلاوة والزيادة
2023-08-13
افعال القلوب
17-10-2014
مقومات القوة المورفولوجية- الموقع الفلكي
28-11-2021
Ternary boron nitrides
31-1-2018

Human Immune Deficiency Virus (HIV)  
  
1264   02:01 صباحاً   date: 19-11-2015
Author : Kayser, F. H
Book or Source : Medical Microbiology
Page and Part :


Read More
Date: 18-11-2015 1272
Date: 19-11-2015 1566
Date: 18-11-2015 1307

Human Immune Deficiency Virus (HIV)

 

HIV replication

HIV can infect T4 lymphocytes and other cells bearing the CD4 marker on their surface. The CD4 molecule is the main receptor for HIV, or more precisely for its gp120 . In addition, either the chemokine receptor CCR5 (macro­phage-tropic R5 HIV strains) or CXCR4 (T cell-tropic X4 strains) is used as a core­ceptor. Persons with (homozygotic) missing CCR5 are highly resistant to HIV infec­tion. A number of other coreceptors are also active depending on the viral strain involved. HIV is then taken in by the cell. After uncoating, reverse transcription takes place in the cytoplasm. The rest of the viral replication process basically corresponds to the description of retroviral replication on p. 385. The interaction of the many different contributing control genes is responsible for the long latency period and subsequent viral replication (see also Fig. 8.14). Replication of HIV takes the form of a lytic cycle, i.e., it results in destruction of the host cell, making it an exception among retroviruses. It must also be noted that the cell destruction mechanism has not been completely explained. Cell fusions are induced by X4 strains (syncytial formation). These processes occur late in the infection cycle and are associated with progression to AIDS. R5 strains do not induce syncytia, are present early in the course of the infection, and are mainly responsible for transmission of HIV. Besides virus-induced cell destruction (p. 392), apoptosis also appears to play an important role in the elimination of CD4+ cells.

Pathogenesis and clinical picture. AIDS was described as a discrete pathol­ogy of the immune system in 1981. The pathogenicity of the disease is based on suppression of cellular immunity as a result of the loss of the CD4+ T helper cells.

The primary infection either remains inapparent or manifests as “acute retroviral syndrome” with conjunctivitis, pharyngitis, exanthem, and lymphadenopathy, as well as a transitory meningoencephalitis in some cases. p24 antigen  is detectable in serum after about 14 days, i.e., before the antibodies. This stage is followed by a long period of clinical latency (the in­cubation period is described as 10 years), during which the carrier is clinically normal but may be infectious. The HI virus can persist in a latent state in CD4+ T lymphocytes, macrophages, and the Langerhans cells in the skin. Appar­ently, viral replication continues throughout this period, especially in lym­phoid organs.

The drop in CD4+ lymphocytes and the rise in the virus count (viral load, see below) in peripheral blood is followed by the lymphadenopathic stage. Opportunistic infections then set in, frequently combined with lymphomas, the otherwise rare Kaposi sarcoma, or so-called AIDS encephalopathy (sub­acute AIDS encephalitis, AIDS dementia complex). Similar neurological symp­toms may also be induced because of HIV-induced immunosuppression , Toxoplasma or papovaviruses , or lymphomas.

Laboratory diagnosis. The following diagnostic tools are currently available for confirmation of an HIV infection :

-HIV antibody detection. EIA screening tests are now available using genetically engineered or synthesized viral antigens (first to third generation of screening tests). Every positive result requires confirmation by an alterna­tive test.

The fourth-generation screening tests simultaneously detect antibodies to HIV 1 and 2 and p24 antigen (combination test) and are thus capable of detecting primary infections that are still antibody-negative.

-HIV antigen detection. In this test, a viral protein is detected in serum, usually capsid protein p24. The p24 antigen is detectable in serum as early as two weeks after infection and disappears again after eight to 12 weeks. Following a clinically stable latency period, HIV antigen can become detect­able months or years later (transitory or persistent). This renewed appear­ance of HIV antigen is usually followed by manifest AIDS and is therefore a negative prognostic sign.

 -Rapid HIV test. Antibody-based tests are available for rapid diagnosis in medical practices, hospitals, and health centers. Their specifications are 8 equivalent to the third-generation screening tests.

-PCR. The most important application of the polymerase chain reaction (PCR, see p. 409) today is to determine the so-called viral load, whereby a commercially available quantitative RT-PCR (reverse transcriptase PCR) is used to determine the number of viral RNA molecules per ml of blood, taking into account the added standard amounts of HIV RNA (quantification stan­dard). This test provides a prognostic estimate of how great the risk of pro­gression to AIDS is (manifestation of an AIDS-defining disease). It can also be used to monitor the success of therapy with RT and protease inhibitors.

The following HIV diagnostic procedure is now recommended: an HIV anti­body screening test should first be performed to diagnose an HIV infection. If the test result is positive, a second serum specimen should be tested to con­firm the result and exclude confusion of sera. If the initial screening test is negative, but a (primary) HIV infection is justifiably suspected, HIV antigen can be tested, for instance using the combination test.

Epidemiology and prevention. HIV is transmitted by blood, blood products, and sexual intercourse. The virus can also be transmitted from mother to child in intrauterine infection, perinatal transmission, or the mother's milk. Infection via saliva or insect bite has not been confirmed. Accordingly, three rules of behavior are now propagated to prevent the spread of HIV: use a good-quality condom for each act of sexual intercourse. For i.v. drug con­sumption use only sterile syringes and needles; never share or pass on these injection utensils. Couples one of whom is HIV-positive should avoid an un­planned pregnancy.

Intensive efforts are being made to develop a vaccine (active immuniza­tion) and several vaccines will soon be ready for field trials. The types under consideration include split vaccines (p. 403), genome-free particles, attenu­ated viruses, naked DNA, and inactivated virions. It is not practicable to cover this field of research in detail here due to the fast-moving, and the necessarily tenuous, nature of the ongoing work.

Therapy. The recommended therapeutic procedure is also subject to rapid changes, whereby the common goal is to reduce the number of viruses as far as possible (<50 RNA copies per ml) and as soon as possible. Doing so can delay the occurrence of clinical symptoms, eliminate existing symptoms and slow or stop the development of resistance in the HI viruses.

In general, therapy is considered in reaction to the initial retroviral syn­drome. Therapy is recommended in the first, asymptomatic stage at CD4+ cell counts below 350, and if the count is higher than 350 only if the viral load is raised (consider therapy at 5000, therapy recommended at >30 000 RNA copies/ml). Pregnancy in an HIV-positive woman is a further therapeutic indication.

Three classes of substances are available for HIV therapy:

Nucleosidic (or nucleotidic) reverse transcriptase inhibitors (NRTI) (for example: azidothymidine, AZT; lamivudine, 3TC; didanosine, ddI, etc.). These are nucleoside analogs that bind to the active center of the enzyme are integrated in the DNA strands, resulting in “chain termination.”

Nonnucleosidic reverse transcriptase inhibitors (NNRTI) (for example: efavirenz, EFV; nevirapine, NVP, etc.). This class of substances also inhibits the production of viral cDNA by reverse transcriptase, but does not prevent viral production by infected cells.

Protease inhibitors (PI) (for example: indinavir, IDV; ritonavir, RTV; sa­quinavir, SQV, etc.): PIs inhibit viral protease and thus viral maturation.

Standard vaccines can be used to prevent other infections, for example opportunistic infections in HIV-positive persons, especially children showing no symptoms. The dead vaccine type is recommended for polio. Live vaccine materials should generally not be used in persons showing AIDS symptoms.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.