المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Joseph Raphson  
  
1592   02:43 صباحاً   date: 24-1-2016
Author : D J Thomas
Book or Source : Joseph Raphson, F.R.S., Notes and Records Roy
Page and Part : ...


Read More
Date: 18-1-2016 1267
Date: 24-1-2016 2149
Date: 21-1-2016 1648

Born: 1648 in Middlesex, England
Died: 1715

 

Joseph Raphson's life can only be deduced from a number of pointers. No obituary of Raphson seems to have been written and we can now only piece together details about his life from records which exist such at University of Cambridge records and records of the Royal Society. It is through the University of Cambridge records that we know that Raphson attended Jesus College Cambridge and graduated with an M.A. in 1692.

Rather remarkably Raphson was made a member of the Royal Society in 1691, the year before he graduated. His election to that Society was on the strength of his book Analysis aequationum universalis which was published in 1690 contained the Newton method for approximating the roots of an equation.

In Method of Fluxions Newton describes the same method and, as an example, finds the root of x3 - 2x - 5 = 0 lying between 2 and 3. Although written in 1671 it was not published until 1736, so Raphson published the result nearly 50 years before Newton.

Raphson's relation to Newton is important but not particularly well understood. In [2] Copenhaver writes:-

Raphson was one of the few people whom Newton allowed to see his mathematical papers. As early as 1691, he and Edmund Halley were involved in plans to publish Newton's work of the early 1670's on quadrature of curves, a project fulfilled only in 1704, and then in a much different form. In1711, Roger Cotes and Willian Jones arranged for Raphson to see some of Newton's papers '... pertinent to his design of writing an History of the Method of Fluxions'.

Raphson did indeed write his History of Fluxions which did not appear until 1715 after Raphson had died. It is unclear how pleased Newton was with this work despite its clear position in favour of Newton's claims over those of Leibniz. Certain letters which had passed between Newton and Leibniz appeared as an appendix to a reprint of Raphson's book in 1716-1718. Immediately a row broke out and Johann Bernoulli showed his anger. An attempt was made by Newton to calm things down when he wrote to Johann Bernoulli saying:-

I stopt [Raphson's History of Fluxions] coming abroad for three or four years.

However, Newton admitted in a letter to Varignon that he was responsible for the letter being added to Raphson's book:-

When I heard that Mr Leibnitz was dead I caused what had passed between him and me to be printed at the end of Raphson's book because copies thereof had been dispersed by Mr Leibnitz.

This was not Raphson's only publication relating to Newton's work. He translated Newton's algebraic work from Latin to English. Newton's Arithmetica universalis was translated by Raphson and appeared as Universal arithmetick in 1720 after Raphson's death.

Early in his career Raphson published a mathematical dictionary. In 1691, the year Raphson was elected to the Royal Society, Ozanam published Dictionnaire mathématique. Raphson produced his shorter version A mathematical dictionary in 1702 which is:-

A mathematical dictionary or a compendious explication of all mathematical terms, abridg'd from Monsieur Ozanam and others ... written by J Raphson FRS.

Raphson published a second edition of his analysis book and, at the same time, De spatio reali which is an application of mathematical reasoning to theological issues. Raphson wrote a second theological work Demonstratio de deo in 1710.

De spatio reali discusses space and in it Raphson talks of 'real space' which he thinks of as being independent of the mind that perceives it. He discusses the infinite, distinguishing between the potentially infinite and the actual infinite. In discussing motion he argues that space is infinite but the collection of moving objects in it is finite.

Raphson's ideas of space and philosophy were based on Cabalist ideas. The Cabala was a Jewish mysticism which was influential from the 12th century on. It was an oral tradition and initiation into its doctrines and practices was passed on. Cabala developed several basic doctrines which were strong influences on Raphson's philosophical thinking. The doctrines included the withdrawal of the divine light, thereby creating primordial space, the sinking of luminous particles into matter and a "cosmic restoration" that is achieved by Jews through living a mystical life.

In these two works by Raphson De spatio reali and Demonstratio de deo, cosmology, natural philosophy, mathematics and his Cabalist beliefs combine. Of course his religious beliefs greatly influenced all his thinking. Newton's views of space were strongly influenced by Christian beliefs, and possible just slightly by his interaction with Raphson.


 

Articles:

  1. N Bi'cani'c and K H Johnson, Who was 'Raphson'?, Internat. J. Numer. Methods Engrg. 14 (1) (1979), 148-152.
  2. B Copenhaver, Jewish Theologies of Space in the Scientific Revolution: Henry More, Joseph Raphson, Isaac Newton and their Predecessors, Annals of Science 37 (1980).
  3. D J Thomas, Joseph Raphson, F.R.S., Notes and Records Roy. Soc. London 44 (2) (1990), 151-167.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.