المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

امثلة على تجربة مركز الكتلة (مركز الثقل)
6-8-2016
تفاعلات الإضافة إلى الرابطة المزدوجة Double Bond Addition Reactions
4-11-2017
إقامة الصلاة
2023-03-26
هل يوفّر الزمكان تفسيرًا؟
2024-08-09
سر عدم تقبل الكفار للوعظ
2023-10-25
Susceptibility
10-2-2021

Kamalakara  
  
1333   02:48 صباحاً   date: 24-1-2016
Author : G G Joseph
Book or Source : The crest of the peacock
Page and Part : ...


Read More
Date: 24-1-2016 1757
Date: 18-1-2016 1430
Date: 18-1-2016 1040

Born: about 1616 in Benares (now Varanasi), India
Died: about 1700 in India

 

Kamalakara was an Indian astronomer and mathematician who came from a family of famous astronomers. Kamalakara's father was Nrsimha who was born in 1586. Two of Kamalakara's three brothers were also famous astronomer/ mathematicians, these being Divakara, who was the eldest of the brothers born in 1606, and Ranganatha who was younger than Kamalakara.

As was common throughout the classical period of Indian mathematics, members of the family acted as teachers to other family members. In particular Kamalakara was taught by his elder brother Divakara while Divakara himself had been taught by their uncle Siva. Pingree writes in [1]:-

[Kamalakara] combined traditional Indian astronomy with Aristotelian physics and Ptolemaic astronomy as presented by Islamic scientists (especially Ulugh Beg). Following his family's tradition he wrote a commentary, Manorama, on Ganesa's Grahalaghava and, like his father, Nrsimha, another commentary on the Suryasiddhanta, called the Vasanabhasya ...

Kamalakara's most famous work, the Siddhanta-tattva-viveka, was commented on by Kamalakara himself. The work was completed in 1658. It is a work of fifteen chapters covering standard topics for Indian astronomy texts at this time. It deals with the topics of: units of time measurement; mean motions of the planets; true longitudes of the planets; the three problems of diurnal rotation; diameters and distances of the planets; the earth's shadow; the moon's crescent; risings and settings; syzygies; lunar eclipses, solar eclipses; planetary transits across the sun's disk; the patas of the moon and sun; the "great problems"; and a final chapter which forms a conclusion.

The third chapter of the Siddhanta-tattva-viveka contains some of the most interesting mathematical results. In that chapter Kamalakara used the addition and subtraction theorems for the sine and the cosine to give trigonometric formulae for the sines and cosines of double, triple, quadruple and quintuple angles. In particular he gives formulae for sin(A/2) and sin(A/4) in terms of sin(A) and iterative formulae for sin(A/3) and sin(A/5). See for example [7] and [8] for a discussion of the details of Kamalakara's work in this area.

The Siddhanta-tattva-viveka is a Sanskrit text and in it Kamalakara makes frequent use of the place-value number system with Sanskrit numerals. This and many other aspects of the work are discussed in [3].


 

  1. D Pingree, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830902250.html

Books:

  1. G G Joseph, The crest of the peacock (London, 1991).
  2. S Dvivedi, The Siddhantatattvaviveka of Kamalakara (Benares, 1935).

Articles:

  1. A K Bag, Indian literature on mathematics during 1400-1800 A.D., Indian J. Hist. Sci. 15 (1) (1980), 79-93.
  2. R C Gupta, Kamalakara's mathematics and construction of Kundas, Ganita Bharati 20 (1-4) (1998), 8-24.
  3. R C Gupta, Addition and subtraction theorems for the sine and the cosine in medieval India, Indian J. History Sci. 9 (2) (1974), 164-177.
  4. R C Gupta, Sines and cosines of multiple arcs as given by Kamalakara, Indian J. History Sci. 9 (2) (1974), 143-150.
  5. R C Gupta, Sines of sub-multiple arcs as found in the Siddhanta-tattva-viveka, Ranchi Univ. Math. J. 5 (1974), 21-27.
  6. D Pingree, Islamic astronomy in Sanskrit, J. Hist. Arabic Sci. 2 (2) (1978), 315-330; 425.
  7. A N Singh, Hindu trigonometry, Proc. Benares Math. Soc. 1 (1939), 77-92.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.