المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 12104 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Photon Engine  
  
375   04:59 مساءاً   date: 19-10-2016
Author : Franklin Potter and Christopher Jargodzki
Book or Source : Mad about Modern Physics
Page and Part : p 61


Read More
Date: 6-11-2016 403
Date: 10-10-2016 273
Date: 2-10-2016 350

Photon Engine

The ideal Carnot heat engine converts heat to work without the engine itself being a source of any work. The reversible closed Carnot cycle consists of two isothermal (constant temperature) processes and two adiabatic (no external exchange of thermal energy) processes. No heat engine operating between two temperatures can be more efficient than a Carnot cycle.

But Carnot could be wrong. The challenger is the new “quantum Carnot engine,” in which the radiation pressure from photons drives a piston in an optical cavity. The inward-facing surface of the piston is mirrored and the other cavity mirror is fixed in place while exchanging thermal energy with a heat sink at temperature T1. A second heat bath at a higher temperature, T2, provides the source of thermal energy for the photons.

This source of thermal energy is a stream of hot atoms, which flows into the optical cavity and exchanges thermal energy with the photons through emission and absorption processes. These atoms exit the cavity at a cooler temperature and are reheated to T2 in a second cavity, to be reinjected into the first cavity for the next cycle of the quantum Carnot engine.

Therefore, the quantum and classical Carnot engines operate in the same way as a closed cycle of two isothermal and two adiabatic processes. However, in its simplest form, when each bath atom is treated as a two-state system, the quantum Carnot engine cannot extract work from a single heat bath. Why not? Will the engine work if each bath atom is a three-state system?

Answer

We can analyze the operation of the quantum Carnot engine in the same manner in which we would analyze a classical Carnot engine. Let Qin be the energy absorbed from the bath atoms during the isothermal expansion and Qout be the energy given to the heat sink during the isothermal compression. Then the Carnot engine efficiency η = (QinQout)/Qin.

If the bath atoms are assumed to be two-state systems that absorb and emit radiation at the same photon frequency, then we need the thermodynamic properties of a photon gas in order to determine the theoretical efficiency of this photon engine. Assuming thermal equilibrium for the photon gas, the average number of photons n2 with energy ε coming in from the heat bath at temperature T2 is given by n2 = 1/(exp[ε/kT2] – 1), while the average number of photons n1 leaving at temperature T1 is n1 = 1/(exp[ε/kT1] – 1). Since Qinn2 ε and Qoutn1 ε, the efficiency of the quantum Carnot engine is η = 1 – T1/T2, exactly the same as for the classical Carnot engine. When there is only one heat bath, with T1 = T2, no work can be done.

A different quantum engine occurs when the bath atoms have three states instead of two, bringing in quantum behavior called quantum coherence, with a non-vanishing phase difference between the two lowest atomic states induced by a microwave field. One can eliminate the photon absorption process (analogous to laser operation without a population inversion). The temperature T2 becomes altered to a different effective temperature, Tφ. The efficiency ηφ = (TφT1)/T1 can exceed the efficiency of the classical Carnot engine. This quantum engine can extract work from a single heat bath, even when T1 = T2! For the details of the three-state quantum engine’s operation, see the reference below.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.