المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11600 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
العمل الجيومورفي للثلاجة
2025-01-11
مظاهر الارساب الريحي
2025-01-11
المظاهر الأرضية للرياح
2025-01-11
Acute respiratory distress syndrome (ARDS)
2025-01-11
المظاهر الكارستية الناتجة عن عمليات البناء (الترسيب)
2025-01-11
Giant cell (temporal) arteritis
2025-01-11


Ionization Energy  
  
1046   02:03 مساءً   date: 18-5-2017
Author : Donald A. Neamen
Book or Source : Semiconductor Physics and Devices
Page and Part : p 117


Read More
Date: 20-5-2017 1523
Date: 24-5-2016 1258
Date: 25-9-2020 1576

Ionization Energy

We can calculate the approximate distance of the donor electron from the donor impurity ion, and also the approximate energy required to elevate the donor electron into the conduction band. This energy is referred to as the ionization energy. We will use the Bohr model of the atom for these calculations. The justification for using this model is that the most probable distance of an electron from the nucleus in a hydrogen atom, determined from quantum mechanics, is the same as the Bohr radius. The energy levels in the hydrogen atom determined from quantum mechanics are also the same as obtained from the Bohr theory.

In the case of the donor impurity atom, we may visualize the donor electron orbiting the donor ion, which is embedded in the semiconductor material. We will need to use the permittivity of the semiconductor material in the calculations rather than the permittivity of free space as is used in the case of the hydrogen atom. We will all use the effective mass of the electron in the calculations.

The analysis begins by setting the coulomb force of attraction between the electron and ion equal to the centripetal force of the orbiting electron. This condition we give a steady orbit. We have

(1)

where v is the magnitude of the velocity and rn is the radius of the orbit. If we assort the angular momentum is also quantized, then we can write

(2)

where n is a positive integer. Solving for v from Equation (2), substituting in Equation (1), and solving for the radius, we obtain

(3)

The assumption of the angular momentum being quantized leads to the radius as being quantized.

The Bohr radius is defined as

(4)

We can normalize the radius of the donor orbital to that of the Bohr radius, which give

(5)

where ϵr is the relative dielectric constant of the semiconductor material, m0 is tires mass of an electron, and m* is the conductivity effective mass of and m* is the conductivity effective mass of the electron the electron the semiconductor.

If we consider the lowest energy state in which n = 1, and if we consider silos in which ϵr = 11.7 and the conductivity effective mass is m*/m0 = 0.26. then we have that

(6)

or r1 = 23.9 A. This radius corresponds to approximately four lattice constants silicon. Recall that one unit cell in silicon effectively contains eight atoms, so the radius of the orbiting donor electron encompasses many silicon atoms. The donor electron is not tightly bound to the donor atom.

The total energy of the orbiting electron is given by

(7)

where T is the kinetic energy and V is the potential energy of the electron. The kinetic energy is

(8)

Using the velocity v from Equation (2) and the radius rn from Equation (3), the kinetic energy becomes

(9)

The potential energy is

(10)

The total energy is the sum of the kinetic and potential energies, so that

(11)

For the hydrogen atom, m* = m0 and ϵ = ϵ0. The ionization energy of the hydrogen atom in the lowest energy state is then E = - 13.6 eV. If we consider silicon, the ionization energy is E = -25.8 m eV, much less than the bandgap energy of silicon. This energy is the approximate ionization energy of the donor atom, or the energy required to elevate the donor electron into the conduction band.

For ordinary donor impurities such as phosphorus or arsenic in silicon or germanium, this hydrogenic model works quite well and gives some indication of the magnitudes of the ionization energies involved. Table 1.1 lists the actual experimentally measured ionization energies for a few impurities in silicon and germanium. Germanium and silicon have different relative dielectric constants and effective masses; thus we expect the ionization energies to differ.

Table 1.1 Impurity ionization energies in silicon and germanium.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.