تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
ole
المؤلف: Renteln, P. and Dundes, A
المصدر: Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52
الجزء والصفحة: 24-34
18-12-2018
822
The word "pole" is used prominently in a number of very different branches of mathematics. Perhaps the most important and widespread usage is to denote a singularity of a complex function. In inversive geometry, the inversion pole is related to inverse points with respect to an inversion circle. The term "pole" is also used to denote the degenerate points and in spherical coordinates, corresponding to the north pole and south polerespectively. "All-poles method" is an alternate term for the maximum entropy method used in deconvolution. In triangle geometry, an orthopole is the point of concurrence certain perpendiculars with respect to a triangle of a given line, and a Simson line pole is similarly defined based on the Simson line of a point with respect to a triangle. In projective geometry, the perspector is sometimes known as the perspective pole.
In complex analysis, an analytic function is said to have a pole of order at a point if, in the Laurent series, for and . Equivalently, has a pole of order at if is the smallest positive integer for which is holomorphic at . A analytic function has a pole at infinity if
A nonconstant polynomial has a pole at infinity of order , i.e., the polynomial degree of .
The basic example of a pole is , which has a single pole of order at . Plots of and are shown above in the complex plane.
For a rational function, the poles are simply given by the roots of the denominator, where a root of multiplicity corresponds to a pole of order .
A holomorphic function whose only singularities are poles is called a meromorphic function.
Renteln and Dundes (2005) give the following (bad) mathematical jokes about poles:
Q: What's the value of a contour integral around Western Europe? A: Zero, because all the Poles are in Eastern Europe.
Q: Why did the mathematician name his dog "Cauchy?" A: Because he left a residue at every pole.
REFERENCES:
Renteln, P. and Dundes, A. "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52, 24-34, 2005.