1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التحليل : التحليل العقدي :

Conformal Mapping

المؤلف:  Arfken, G

المصدر:  "Conformal Mapping." §6.7 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press

الجزء والصفحة:  ...

1-11-2018

2771

Conformal Mapping 

A conformal mapping, also called a conformal map, conformal transformation, angle-preserving transformation, or biholomorphic map, is a transformation w=f(z) that preserves local angles. An analytic function is conformal at any point where it has a nonzero derivative. Conversely, any conformal mapping of a complex variable which has continuous partial derivatives is analytic. Conformal mapping is extremely important in complex analysis, as well as in many areas of physics and engineering.

A mapping that preserves the magnitude of angles, but not their orientation is called an isogonal mapping (Churchill and Brown 1990, p. 241).

ConformalTransformationsConformalContours

Several conformal transformations of regular grids are illustrated in the first figure above. In the second figure above, contours of constant |z| are shown together with their corresponding contours after the transformation. Moon and Spencer (1988) and Krantz (1999, pp. 183-194) give tables of conformal mappings.

A method due to Szegö gives an iterative approximation to the conformal mapping of a square to a disk, and an exact mapping can be done using elliptic functions (Oberhettinger and Magnus 1949; Trott 2004, pp. 71-77).

Let theta and phi be the tangents to the curves gamma and f(gamma) at z_0 and w_0 in the complex plane,

w-w_0 = f(z)-f(z_0)

(1)

= (f(z)-f(z_0))/(z-z_0)(z-z_0)

(2)

 arg(w-w_0)=arg[(f(z)-f(z_0))/(z-z_0)]+arg(z-z_0).

(3)

Then as w->w_0 and z->z_0,

(4)

(5)

A function f:C->C is conformal iff there are complex numbers a!=0 and b such that

 f(z)=az+b

(6)

for z in C (Krantz 1999, p. 80). Furthermore, if h:C->C is an analytic function such that

 lim_(|z|->+infty)|h(z)|=+infty,

(7)

then h is a polynomial in z (Greene and Krantz 1997; Krantz 1999, p. 80).

Conformal transformations can prove extremely useful in solving physical problems. By letting w=f(z), the real and imaginary parts of w(z) must satisfy the Cauchy-Riemann equations and Laplace's equation, so they automatically provide a scalar potentialand a so-called stream function. If a physical problem can be found for which the solution is valid, we obtain a solution--which may have been very difficult to obtain directly--by working backwards.

For example, let

 w(z)=Az^n=Ar^ne^(intheta),

(8)

the real and imaginary parts then give

phi = Ar^ncos(ntheta)

(9)

psi = Ar^nsin(ntheta).

(10)

Conformal-2

For n=-2,

phi = A/(r^2)cos(2theta)

(11)

psi = -A/(r^2)sin(2theta),

(12)

which is a double system of lemniscates (Lamb 1945, p. 69).

Conformal-1

For n=-1,

phi = A/rcostheta

(13)

psi = -A/rsintheta.

(14)

This solution consists of two systems of circles, and phi is the potential function for two parallel opposite charged line charges (Feynman et al. 1989, §7-5; Lamb 1945, p. 69).

Conformal12

For n=1/2,

phi = Ar^(1/2)cos(theta/2)=Asqrt((sqrt(x^2+y^2)+x)/2)

(15)

psi = Ar^(1/2)sin(theta/2)=Asqrt((sqrt(x^2+y^2)-x)/2).

(16)

phi gives the field near the edge of a thin plate (Feynman et al. 1989, §7-5).

Conformal1

For n=1,

phi = Arcostheta=Ax

(17)

psi = Arsintheta=Ay,

(18)

giving two straight lines (Lamb 1945, p. 68).

Conformal32

For n=3/2,

 w=Ar^(3/2)e^(3itheta/2).

(19)

phi gives the field near the outside of a rectangular corner (Feynman et al. 1989, §7-5).

Conformal2

For n=2,

w = A(x+iy)^2=A[(x^2-y^2)+2ixy]

(20)

phi = A(x^2-y^2)=Ar^2cos(2theta)

(21)

psi = 2Axy=Ar^2sin(2theta).

(22)

These are two perpendicular hyperbolas, and phi is the potential function near the middle of two point charges or the field on the opening side of a charged right angle conductor (Feynman 1989, §7-3).


REFERENCES:

Arfken, G. "Conformal Mapping." §6.7 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 392-394, 1985.

Bergman, S. The Kernel Function and Conformal Mapping. New York: Amer. Math. Soc., 1950.

Carathéodory, C. Conformal Representation. New York: Dover, 1998.

Carrier, G.; Crook, M.; and Pearson, C. E. Functions of a Complex Variable: Theory and Technique. New York: McGraw-Hill, 1966.

Churchill, R. V. and Brown, J. W. Complex Variables and Applications, 5th ed. New York: McGraw-Hill, 1990.

Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 80, 1967.

Feynman, R. P.; Leighton, R. B.; and Sands, M. The Feynman Lectures on Physics, Vol. 2. Redwood City, CA: Addison-Wesley, 1989.

Greene, R. E. and Krantz, S. G. Function Theory of One Complex Variable. New York: Wiley, 1997.

Katznelson, Y. An Introduction to Harmonic Analysis. New York: Dover, 1976.

Kober, H. Dictionary of Conformal Representations. New York: Dover, 1957.

Krantz, S. G. "Conformality," "The Geometric Theory of Holomorphic Functions," "Applications That Depend on Conformal Mapping," and "A Pictorial Catalog of Conformal Maps." §2.2.5, Ch. 6, Ch. 14, and Appendix to Ch. 14 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 25, 79-88, and 163-194, 1999.

Kythe, P. K. Computational Conformal Mapping. Boston, MA: Birkhäuser, 1998.

Lamb, H. Hydrodynamics, 6th ed. New York: Dover, 1945.

Mathews, J. "Conformal Mappings." http://www.ecs.fullerton.edu/~mathews/fofz/cmaps.html.

Moon, P. and Spencer, D. E. "Conformal Transformations." §2.01 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 49-76, 1988.

Morse, P. M. and Feshbach, H. "Conformal Mapping." §4.7 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 358-362 and 443-453, 1953.

Nehari, Z. Conformal Mapping. New York: Dover, 1982.

Oberhettinger, F. and Magnus, W. Anwendungen der elliptischen Funktionen in Physik and Technik. Berlin: Springer-Verlag, 1949.

Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.

EN

تصفح الموقع بالشكل العمودي