1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Archimedes, Axiom

المؤلف:  Boyer, C. B. and Merzbach, U. C

المصدر:  A History of Mathematics, 2nd ed. New York: Wiley

الجزء والصفحة:  ...

21-10-2019

2546

Archimedes' Axiom

Archimedes' axiom, also known as the continuity axiom or Archimedes' lemma, survives in the writings of Eudoxus (Boyer and Merzbach 1991), but the term was first coined by the Austrian mathematician Otto Stolz (1883). It states that, given two magnitudes having a ratio, one can find a multiple of either which will exceed the other. This principle was the basis for the method of exhaustion, which Archimedes invented to solve problems of area and volume.

Symbolically, the axiom states that

 a/b=c/d

iff the appropriate one of following conditions is satisfied for integers m and n:

1. If ma<nb, then mc<nd.

2. If ma=nb, then mc=nd.

3. If ma>nb, then mc>nd.

Formally, Archimedes' axiom states that if AB and CD are two line segments, then there exist a finite number of points A_1A_2, ..., A_n on A union B such that

 CD=AA_1=A_1A_2=...=A_(n-1)A_n,

and B is between A and A_n (Itô 1986, p. 611). A geometry in which Archimedes' lemma does not hold is called a non-Archimedean Geometry.


REFERENCES:

Boyer, C. B. and Merzbach, U. C. A History of Mathematics, 2nd ed. New York: Wiley, pp. 89 and 129, 1991.

Itô, K. (Ed.). §155B and 155D in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 2. Cambridge, MA: MIT Press, p. 611, 1986.

Stolz, O. "Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes." Math. Ann. 22, 504-520, 1883.

Stolz, O. "Über das Axiom des Archimedes." Math. Ann. 39, 107-112, 1891.

Veronese, G. "Il continuo rettilineo e l'assioma cinque d'Archimede." Atti della Reale Accademia dei Lincei Ser. 4, No. 6, 603-624, 1890.

EN

تصفح الموقع بالشكل العمودي