1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Negabinary

المؤلف:  Gardner, M

المصدر:  Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman

الجزء والصفحة:  ...

27-11-2019

724

Negabinary

The negabinary representation of a number n is its representation in base -2 (i.e., base negative 2). It is therefore given by the coefficients a_na_(n-1)...a_1a_0 in

n = sum_(i=0)a_i(-2)^i

(1)

= ...+a_2(-2)^2+a_1(-2)^1+a_0(-2)^0,

(2)

where a_i=0,1.

Conversion of n to negabinary can be done using the Wolfram Language code

  Negabinary[n_Integer] := Module[
    {t = (2/3)(4^Floor[Log[4, Abs[n] + 1] + 2] - 1)},
    IntegerDigits[BitXor[n + t, t], 2]
  ]

due to D. Librik (Szudzik). The bitwise XOR portion is originally due to Schroeppel (1972), who noted that the sequence of bits in n is given by ...01010101.

The following table gives the negabinary representations for the first few integers (OEIS A039724).

n negabinary n negabinary
1 1 11 11111
2 110 12 11100
3 111 13 11101
4 100 14 10010
5 101 15 10011
6 11010 16 10000
7 11011 17 10001
8 11000 18 10110
9 11001 19 10111
10 11110 20 10100

If these numbers are interpreted as binary numbers and converted to decimal, their values are 1, 6, 7, 4, 5, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, ... (OEIS A005351). The numbers having the same representation in binary and negabinary are members of the Moser-de Bruijn sequence, 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, ... (OEIS A000695).


REFERENCES:

Gardner, M. Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, p. 101, 1986.

Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.

Schroeppel, R. Item 128 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 24, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/flows.html#item128.

Sloane, N. J. A. Sequences A000695/M3259, A005351/M4059, and A039724 in "The On-Line Encyclopedia of Integer Sequences."

Szudzik, M. "Programming Challenge: A Mathematica Programming Contest." Wolfram Technology Conference, 1999.

EN

تصفح الموقع بالشكل العمودي