1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Chinese Hypothesis

المؤلف:  Dickson, L. E

المصدر:  History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 2005.

الجزء والصفحة:  ...

5-1-2020

1508

Chinese Hypothesis

 

The hypothesis that an integer n is prime iff it satisfies the condition that 2^n-2 is divisible by n. Dickson (2005, p. 91) stated that Leibniz believe to have proved that this congruence implies that n is prime. In actuality, this condition is necessary but not sufficient for n to be prime since, for example, 2^(341)-2 is divisible by 341, but 341=11·31 is composite.

Composite numbers n (such as 341) for which 2^n-2 is divisible by n are called Poulet numbers, and are a special class of Fermat pseudoprimes. The Chinese hypothesis is a special case of Fermat's little theorem.

The "Chinese hypothesis," "Chinese congruence," or "Chinese theorem," as it is sometimes called, is commonly attributed to Chinese scholars more than 2500 years ago. However, this oft-quoted attribution (e.g., Honsberger 1973, p. 3) is a myth originating with Jeans (1897-98), who wrote that "a paper found among those of the late Sir Thomas Wade and dating from the time of Confucius" contained the theorem. This assertion was refuted by Needham, who attributes the misunderstanding to an incorrect translation of a passage in a well-known book The Nine Chapters of Mathematical Art (Ribenboim 1996, p. 104). Qi (1991) attributed the hypothesis to Chinese mathematician Li Shan-Lan (1811-1882), communicated the statement to his collaborator in the translation of Western texts, and the collaborator then published it. Li subsequently learned that the statement was wrong, and hence did not publish it himself, but Hua Heng-Fang published the statement as if it were correct in 1882 (Ribenboim 1996, pp. 104-105).


REFERENCES:

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 2005.

Erdős, P. "On the Converse of Fermat's Theorem." Amer. Math. Monthly 56, 623-624, 1949.

Honsberger, R. "An Old Chinese Theorem and Pierre de Fermat." Ch. 1 in Mathematical Gems I. Washington, DC: Math. Assoc. Amer., pp. 1-9, 1973.

Jeans, J. H. Messenger Math. 27, 1897-98.

Needham, J. (Ed.). Ch. 19 in Science and Civilisation in China, Vol. 3: Mathematics and the Sciences of the Heavens and the Earth. Cambridge, England: Cambridge University Press, 1959.

Qi, H. Transmission of Western Mathematics during the Kangxi Kingdom and Its Influence Over Chinese Mathematics. Ph.D. thesis. Beijing, 1991.

Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 103-105, 1996.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 19-20, 1993.

Yan, L. and Shiran, D. Chinese Mathematics, A Concise History. Oxford, England: Clarendon Press, 1987.

EN

تصفح الموقع بالشكل العمودي