تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Khinchin,s Constant
المؤلف: Bailey, D. H.; Borwein, J. M.; and Crandall, R. E.
المصدر: "On the Khintchine Constant." Math. Comput. 66
الجزء والصفحة: ...
30-1-2020
1145
Let
(1) |
be the simple continued fraction of a "generic" real number , where the numbers are the partial quotients. Khinchin (1934) considered the limit of the geometric mean
(2) |
as . Amazingly, except for a set of measure 0, this limit is a constant independent of given by
(3) |
(OEIS A002210), as proved in Kac (1959).
The constant is known as Khinchin's constant, and is commonly also spelled "Khintchine's constant" (Shanks and Wrench 1959, Bailey et al. 1997).
It is implemented as Khinchin, where its value is cached to 1100-digit precision. However, the numerical value of is notoriously difficult to calculate to high precision, so computation of more digits get increasingly slower.
It is not known if is irrational, let alone transcendental.
While it is known that almost all numbers have limits that approach , this fact has not been proven for any explicit real number , e.g., a real number cast in terms of fundamental constants (Bailey et al. 1997).
The values are plotted above for to 500 and , , the Euler-Mascheroni constant , and the Copeland-Erdős constant . Interestingly, the shape of the curves is almost identical to the corresponding curves for the Lévy constant.
If is the th convergent of the continued fraction of , then
(4) |
|||
(5) |
|||
(6) |
(OEIS A086702) for almost all real (Lévy 1936, Finch 2003), where is the natural logarithm of 2. This number is sometimes called the Lévy constant.
Product expressions for include
(7) |
(Shanks and Wrench 1959; Khinchin 1997, p. 93; Borwein and Bailey 2003, p. 25; Havil 2003, p. 161), where is the natural logarithm, and
(8) |
where is the third-order finite difference operator, the latter of which obtained from three applications of summation by parts to the (logarithm of the) usual product definition (W. Gosper, pers. comm. Nov. 14, 2017).
Products such as these can be converted to sums by taking the logarithm of both sides and using . Sums for include
(9) |
where is the Riemann zeta function and is an alternating harmonic number (Bailey et al. 1997),
(10) |
where is the derivative of the Riemann zeta function (Gosper, pers. comm., Jun. 25, 1996) and the extremely rapidly converging sum originally due to Gosper (pers. comm., Jun. 25, 1996) and streamlined by O. Pavlyk (pers. comm., Apr. 24, 2006) is given by
(11) |
where
(12) |
is a Hurwitz zeta function, , and is a hypergeometric function.
Khinchin's constant is also given by the integrals
(13) |
|||
(14) |
(Shanks and Wrench 1959) and
(15) |
Corless (1992) showed that
(16) |
with an analogous formula for the Lévy constant.
Real numbers for which include , , , and the golden ratio , plotted above.
Amazingly, the constant is simply the limiting case of a class of means defined by
(17) |
for real whose values are given by
(18) |
(Ryll-Nardzewski 1951; Bailey et al. 1997; Khinchin 1997). An integral representation for is given by
(19) |
|||
(20) |
for , , ... (Iosifescu and Kraaikamp 2002, p. 231).
The constant
(21) |
is sometimes known as the Khinchin harmonic mean and is the case of an infinite family of such constants of which and are the first two members.
Define the following quantity in terms of the th partial quotient ,
(22) |
Then
(23) |
for almost all real (Khintchine 1934, 1936, Knuth 1981, Finch 2003), and
(24) |
Furthermore, for , the limiting value
(25) |
exists and is a constant with probability 1 (Rockett and Szüsz 1992, Khinchin 1997).
REFERENCES:
Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "On the Khintchine Constant." Math. Comput. 66, 417-431, 1997.
Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Corless, R. M. "Continued Fractions and Chaos." Amer. Math. Monthly 99, 203-215, 1992.
Finch, S. R. "Khintchine-Lévy Constants." §1.8 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 59-65, 2003.
Gosper, R. W. "Simpler Khinchine [was: Re: my two cents]" math-fun@cs.arizona.edu mailing list. 25 Jun 1996.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 159, 2003.
Iosifescu, M. and Kraaikamp, C. Metrical Theory of Continued Fractions. Amsterdam, Netherlands: Kluwer, 2002.
Kac, M. Statistical Independence in Probability, Analysis and Number Theory. Providence, RI: Math. Assoc. Amer., 1959.
Khinchin, A. Ya. "Average Values." §16 in Continued Fractions. New York: Dover, pp. 86-94, 1997.
Khintchine, A. "Metrische Kettenbruchprobleme." Compositio Math. 1, 361-382, 1934.
Khintchine, A. "Metrische Kettenbruchprobleme." Compositio Math. 2, 276-285, 1936.
Knuth, D. E. Exercise 24 in The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, p. 604, 1998.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 46, 1983.
Lehmer, D. H. "Note on an Absolute Constant of Khintchine." Amer. Math. Monthly 46, 148-152, 1939.
Lévy, P. "Sur les lois de probabilité dont dependent les quotients complets et incomplets d'une fraction continue." Bull. Soc. Math. France 57, 178-194, 1929.
Lévy, P. "Sur le développement en fraction continue d'un nombre choisi au hasard." Compositio Math. 3, 286-303, 1936. Reprinted in Œuvres de Paul Lévy, Vol. 6. Paris: Gauthier-Villars, pp. 285-302, 1980.
Phillipp, W. "Some Metrical Theorems in Number Theory." Pacific J. Math. 20, 109-127, 1967.
Rockett, A. M. and Szüsz, P. Continued Fractions. Singapore: World Scientific, 1992.
Ryll-Nardzewski, C. "On the Ergodic Theorems (I,II)." Studia Math. 12, 65-79, 1951.
Shanks, D. "Note MTE 164." Math. Tables Aids Comput. 4, 28, 1950.
Shanks, D. and Wrench, J. W. Jr. "Khintchine's Constant." Amer. Math. Monthly 66, 148-152, 1959.
Sloane, N. J. A. Sequences A002210/M1564, A002211/M0118, A086702, A087491, A087492, A087493, A087494, A087495, A087496, A087497, A087498, A087499, and A087500 in "The On-Line Encyclopedia of Integer Sequences."
Vardi, I. "Khinchin's Constant." §8.4 in Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 163-171, 1991.
Wrench, J. W. Jr. "Further Evaluation of Khinchin's Constant." Math. Comput. 14, 370-371, 1960.
Wrench, J. W. Jr. and Shanks, D. "Questions Concerning Khintchine's Constant and the Efficient Computation of Regular Continued Fractions." Math. Comput. 20, 444-448, 1966.