1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Hypercube Line Picking

المؤلف:  Bailey, D. H.; Borwein, J. M.; and Crandall, R. E

المصدر:  "Box Integrals." Preprint. Apr. 3, 2006.

الجزء والصفحة:  ...

10-2-2020

1314

Hypercube Line Picking 

Let two points x and y be picked randomly from a unit n-dimensional hypercube. The expected distance between the points Delta(n), i.e., the mean line segment length, is then

 Delta(n)=int_0^1...int_0^1_()_(2n)sqrt((x_1-y_1)^2+(x_2-y_2)^2+...+(x_n-y_n)^2)dx_1...dx_ndy_1...dy_n.

(1)

This multiple integral has been evaluated analytically only for small values of n. The case Delta(1) corresponds to the line line picking between two random points in the interval [0,1].

HypercubeLinePlot

The first few values for Delta(n) are given in the following table.

n OEIS Delta(n)
1 -- 0.3333333333...
2 A091505 0.5214054331...
3 A073012 0.6617071822...
4 A103983 0.7776656535...
5 A103984 0.8785309152...
6 A103985 0.9689420830...
7 A103986 1.0515838734...
8 A103987 1.1281653402...

The function Delta(n) satisfies

 1/3n^(1/2)<=Delta(n)<=(1/6n)^(1/2)sqrt(1/3[1+2(1-3/(5n))^(1/2)])

(2)

(Anderssen et al. 1976), plotted above together with the actual values.

HypercubeLinePickingIntegrands

M. Trott (pers. comm., Feb. 23, 2005) has devised an ingenious algorithm for reducing the 2n-dimensional integral to an integral over a 1-dimensional integrand I_n(x) such that

 Delta(n)=int_0^inftyI_n(x)dx.

(3)

The first few values are

I_1 = (2e^(-x^2))/(3sqrt(pi))

(4)

I_2 = (e^(-x^2)erf(x))/(3x)+(4e^(-2x^2))/(15sqrt(pi))+(4e^(-x^2))/(15sqrt(pi))

(5)

I_3 = -2/5e^(-x^2)sqrt(pi)erf^2(x)+(4e^(-2x^2)erf(x))/(5x)+(e^(-x^2)erf(x))/(5x)-(12e^(-3x^2))/(35sqrt(pi))+(68e^(-2x^2))/(105sqrt(pi))+(8e^(-x^2))/(105sqrt(pi))

(6)

I_4 = -(2e^(-x^2)pierf^3(x))/(15x)-(136)/(105)e^(-2x^2)sqrt(pi)erf^2(x)-(32)/(105)e^(-x^2)sqrt(pi)erf^2(x)+(197e^(-3x^2)erf(x))/(210x)+(104e^(-2x^2)erf(x))/(105x)+(e^(-x^2)erf(x))/(14x)-(676e^(-4x^2))/(945sqrt(pi))+(16e^(-3x^2))/(35sqrt(pi))+(146e^(-2x^2))/(315sqrt(pi))+(16e^(-x^2))/(945sqrt(pi)).

(7)

In the limit as x->0, these have values for n=1, 2, ... given by 1/sqrt(pi) times 2/3, 6/5, 50/21, 38/9, 74/11, ... (OEIS A103990 and A103991).

This is equivalent to computing the box integral

 Delta_n(s)=s/(Gamma(1-1/2s))int_0^infty(1-[d(u)]^n)/(u^(s+1))du

(8)

where

d(u) = int_0^1int_0^1e^(-u^2(x-y)^2)dxdy

(9)

= int_0^1int_0^1(e^(-u^2)-1+sqrt(pi)uerf(u))/(u^2)du

(10)

(Bailey et al. 2006).

These give closed-form results for n=1, 2, 3, and 4:

Delta(1) = 1/3

(11)

Delta(2) = 1/(15)[sqrt(2)+2+5ln(1+sqrt(2))]

(12)

Delta(3) = 1/(105)[4+17sqrt(2)-6sqrt(3)+21ln(1+sqrt(2))+42ln(2+sqrt(3))-7pi]

(13)

Delta(4) = (136)/(105)sqrt(2)tan^(-1)(1/2sqrt(2))-(34)/(105)pisqrt(2)+8/(105)sqrt(3)+(73)/(630)sqrt(2)+4/5Cl_2(alpha)-4/5Cl_2(alpha+1/2pi)+(197)/(420)ln3+1/(14)ln(1+sqrt(2))-4/5alphaln(1+sqrt(2))-1/5piln(1+sqrt(2))+(52)/(105)ln(2+sqrt(3))-(23)/(135)-(16)/(315)pi+(26)/(15)K

(14)

Delta(5) = (65)/(42)K-(380)/(6237)sqrt(5)+(568)/(3465)sqrt(3)-4/(189)pi-(449)/(3465)-(73)/(63)sqrt(2)tan^(-1)(1/4sqrt(2))-(184)/(189)ln2+(64)/(189)ln(sqrt(5)+1)+1/(54)ln(1+sqrt(2))+(40)/(63)ln(sqrt(2)+sqrt(6))-5/(28)piln(1+sqrt(2))+(52)/(63)piln2+(295)/(252)ln3+4/(215)pi^2+(3239)/(62370)sqrt(2)-8/(21)sqrt(3)cot^(-1)(sqrt(15))-(52)/(63)piln(sqrt(2)+sqrt(6))-5/7alpha+5/7Cl_2(alpha)-5/7Cl_2(alpha+1/2pi)+(52)/(63)K_1,

(15)

where Cl_2(z) is a Clausen function, K is Catalan's constant, and

 alpha=sin^(-1)((sqrt(2))/6-2/3).

(16)

The n=4 case above seems to be published here for the first time; the simplified form given above is due to Bailey et al. (2006). Attempting to reduce Delta(5) to quadratures gives closed-form pieces with the exception of the single piece

K_1 = pi[1/2ln(2+sqrt(3))-int_0^infty(e^(-2x^2)erf^3(x))/xdx]

(17)

= int_3^4(sec^(-1)x)/(sqrt((x-3)(x-1)))dx

(18)

= int_0^(I[cos^(-1)2])sec^(-1)(2+coshtheta)dtheta

(19)

which appears to be difficult to integrate in closed form (Bailey et al. 2007, p. 272).

The value Delta(3) obtained for cube line picking is sometimes known as the Robbins constant.



REFERENCES:

Anderssen, R. S.; Brent, R. P.; Daley, D. J.; and Moran, A. P. "Concerning int_0^1...int_0^1sqrt(x_1^2+...+x_k^2)dx_1...dx_k and a Taylor Series Method." SIAM J. Appl. Math. 30, 22-30, 1976.

Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "Box Integrals." Preprint. Apr. 3, 2006.

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 272, 2007.

Finch, S. R. "Geometric Probability Constants." §8.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 479-484, 2003.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 30, 1983.

Robbins, D. "Average Distance between Two Points in a Box." Amer. Math. Monthly 85, 278, 1978.

Sloane, N. J. A. Sequences A073012, A091505, A103983, A103984, A103985, A103986, A103987, A103988, A103989, A103990, and A103991 in "The On-Line Encyclopedia of Integer Sequences."

Trott, M. "The Area of a Random Triangle." Mathematica J. 7, 189-198, 1998.

EN

تصفح الموقع بالشكل العمودي