تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Constant
المؤلف: Bailey, D. H. and Crandall, R. E.
المصدر: "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001. http://www.nersc.gov/~dhbailey/dhbpapers/baicran.pdf.
الجزء والصفحة: ...
22-2-2020
1558
A constant, sometimes also called a "mathematical constant," is any well-defined real number which is significantly interesting in some way. In this work, the term "constant" is generally reserved for real nonintegral numbers of interest, while "number" is used to refer to interesting integers (e.g., Brun's constant, but beast number). However, in contexts such as linear combination, the term "constant" is generally used to mean "scalar" or "real number," and need not exclude integer values.
A function, equation, etc., is said to "be constant" (or be a constant function) if it always assumes the same value independent of how its parameters are varied.
Certain constants are known to many decimal digits and recur throughout many diverse areas of mathematics, often in unexpected and surprising places (e.g., pi, e, and to some extent, the Euler-Mascheroni constant ). Other constants are more specialized and may be known to only a few digits. S. Plouffe maintains a site about the computation and identification of numerical constants. Plouffe's site also contains a page giving the largest number of digits computed for the most common constants. S. Finch maintains a delightful, more expository site containing detailed essays and references on constants both common and obscure.
The mathematician Glaisher remarked, "No doubt the desire to obtain the values of these quantities to a great many figures is also partly due to the fact that most of them are interesting in themselves; for , , , , and many other numerical quantities occupy a curious, and some of them almost a mysterious, place in mathematics, so that there is a natural tendency to do all that can be done towards their precise determination" (Gourdon and Sebah).
The following table lists some common constants, their symbols, and approximate values.
constant | Wolfram Language | symbol | OEIS | approx. value |
Apéry's constant | Zeta[3] | A002117 | 1.20206... | |
Catalan's constant | Catalan | A006752 | 0.915966... | |
Delian constant | 2^(1/3) | A002580 | 1.25992... | |
e | E | A001113 | 2.71828... | |
Euler-Mascheroni constant | EulerGamma | A001620 | 0.577216... | |
Glaisher-Kinkelin constant | Glaisher | A074962 | 1.28243... | |
golden ratio | GoldenRatio | A001622 | 1.61803... | |
Khinchin's constant | Khinchin | A002210 | 2.68545... | |
natural logarithm of 2 | Log[2] | A002162 | 0.693147... | |
pi | Pi | A000796 | 3.14159... | |
Pythagoras's constant | Sqrt[2] | A002193 | 1.41421... | |
Soldner's constant | A070769 | 1.45136... |
Gourdon and Sebah and Lyster maintain web pages comparing the fastest known algorithms for computing digits of common constants.
REFERENCES:
Bailey, D. H. and Crandall, R. E. "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001. http://www.nersc.gov/~dhbailey/dhbpapers/baicran.pdf.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 145, 2003.
Borwein, J. and Borwein, P. A Dictionary of Real Numbers. London: Chapman & Hall, 1990.
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.
Gourdon, X. and Sebah, P. "Numbers, Constants and Computation." http://numbers.computation.free.fr/Constants/constants.html.
Gourdon, X. and Sebah, P. "User Constants (Compute log(2), zeta(3), Catalan Constant, Pi with Arctan Formulas ... with pifast." http://numbers.computation.free.fr/Constants/PiProgram/userconstants.html.
Gourdon, X. and Sebah, P. "Constants and Records of Computation." http://numbers.computation.free.fr/Constants/Miscellaneous/Records.html.
Kondo, S. "PI WORLD OF JA0HXV." http://ja0hxv.calico.jp/pai/estart.html.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 1983.
Lyster, S. "Stu's Pi Page: The Fastest Pi Programs on the Planet." http://home.istar.ca/~lyster/otherconstants.html.
Michon, G. P. "Final Answers: Numerical Constants." http://home.att.net/~numericana/answer/constants.htm.
Munafo, R. "Notable Properties of Specific Numbers." http://home.earthlink.net/~mrob/pub/math/numbers.html.
Niklasch, G. "Some Number-Theoretical Constants Arising as Products of Rational Functions of over the Primes." http://www.gn-50uma.de/alula/essays/Moree/Moree.en.shtml.
Plouffe, S. "Plouffe's Inverter." http://pi.lacim.uqam.ca/eng/.
Plouffe, S. "Plouffe's Inverter: Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.
Plouffe, S. "Miscellaneous Mathematical Constants." http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/toc.html.
Robinson, H. P. and Potter, E. Mathematical Constants. Report UCRL-20418. Berkeley, CA: University of California, 1971.
Trott, M. "Mathematical Constants." §2.2.4 in The Mathematica GuideBook for Programming. New York: Springer-Verlag, pp. 171-180, 2004. http://www.mathematicaguidebooks.org/.
Wells, D. W. The Penguin Dictionary of Curious and Interesting Numbers. Harmondsworth, England: Penguin Books, 1986.