تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Gregory Series
المؤلف: Borwein, J. and Bailey, D.
المصدر: "A Curious Anomaly in the Gregory Series." §2.2 in Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters
الجزء والصفحة: ...
8-3-2020
749
The Gregory series is a pi formula found by Gregory and Leibniz and obtained by plugging into the Leibniz series,
(1) |
(Wells 1986, p. 50). The formula converges very slowly, but its convergence can be accelerated using certain transformations, in particular
(2) |
where is the Riemann zeta function (Vardi 1991).
Taking the partial series gives the analytic result
(3) |
Rather amazingly, expanding about infinity gives the series
(4) |
(Borwein and Bailey 2003, p. 50), where is an Euler number. This means that truncating the Gregory series at half a large power of 10 can give a decimal expansion for whose decimal digits are largely correct, but where wrong digits occur with precise regularity. For example, taking gives
where the sequence of differences is precisely twice the Euler (secant) numbers. In fact, just this pattern of digits was observed by J. R. North in 1988 before the closed form of the truncated series was known (Borwein and Bailey 2003, p. 49; Borwein et al. 2004, p. 29).
REFERENCES:
Borwein, J. and Bailey, D. "A Curious Anomaly in the Gregory Series." §2.2 in Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 48-50, 2003.
Borwein, J.; Bailey, D.; and Girgensohn, R. "Gregory's Series Reexamined." §1.8.1 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 28-30, 2004.
Borwein, J. M.; Borwein, P. B.; and Dilcher, K. "Pi, Euler Numbers, and Asymptotic Expansions." Amer. Math. Monthly 96, 681-687, 1989.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 157-158, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 50, 1986.