1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Machin-Like Formulas

المؤلف:  Ball, W. W. R. and Coxeter, H. S. M

المصدر:  Mathematical Recreations and Essays, 13th ed. New York: Dover

الجزء والصفحة:  ...

9-3-2020

769

Machin-Like Formulas

Machin-like formulas have the form

 mcot^(-1)u+ncot^(-1)v=1/4kpi,

(1)

where uv, and k are positive integers and m and n are nonnegative integers. Some such formulas can be found by converting the inverse tangent decompositions for which c_n!=0 in the table of Todd (1949) to inverse cotangents. However, this gives only Machin-like formulas in which the smallest term is +/-1.

Generalized Machin-like formulas in which the argument of the cotangents are rational numbers, including Euler's

 1/4pi=5tan^(-1)(1/7)+2tan^(-1)(3/(79))

(2)

(Lehmer 1938, Wetherfield 1996), square roots such as

 1/2pi=2tan^(-1)(1/(sqrt(2)))+tan^(-1)(1/(sqrt(8))),

(3)

or even mixed quadratic surds (Lehmer 1938) have also been considered.

A trivial one-term Machin-like formula is given by the identity

 1/4pi=cot^(-1)1.

(4)

Two-term Machin-like formulas can be derived by writing

 cot^(-1)z=1/(2i)ln((z+i)/(z-i))

(5)

and looking for a_k and u_k such that

 sum_(k=1)^2a_kcot^(-1)u_k=1/4pi,

(6)

so

 product_(k=1)^2((u_k+i)/(u_k-i))^(a_k)=e^(2pii/4)=i.

(7)

Machin-like formulas exist iff (7) has a solution in integers. This is equivalent to finding positive integer values uv, and k and integer values m and n such that

 mcot^(-1)u+ntan^(-1)v=1/4kpi,

(8)

which occur iff

 (1-i)^k(u+i)^m(v+i)^n

(9)

is real (Borwein and Borwein 1987, p. 345). Another equivalent formulation is to find all integer solutions to one of

1+x^2 = 2y^n

(10)

1+x^2 = y^n

(11)

for n=3, 5, ....

There are only four such two-term formulas,

1/4pi = 4tan^(-1)(1/5)-tan^(-1)(1/(239))

(12)

1/4pi = tan^(-1)(1/2)+tan^(-1)(1/3)

(13)

1/4pi = 2tan^(-1)(1/2)-tan^(-1)(1/7)

(14)

1/4pi = 2tan^(-1)(1/3)+tan^(-1)(1/7),

(15)

known as Machin's formula (Borwein and Bailey 2003, p. 105), Euler's Machin-like formula (Borwein and Bailey 2003, p. 105), Hermann's formula, and Hutton's formula. These follow from the identities

((5+i)/(5-i))^4((239+i)/(239-i))^(-1) = i

(16)

((2+i)/(2-i))((3+i)/(3-i)) = i

(17)

((2+i)/(2-i))^2((7+i)/(7-i))^(-1) = i

(18)

((3+i)/(3-i))^2((7+i)/(7-i)) = i.

(19)

Three-term Machin-like formulas include Gauss's Machin-like formula

 1/4pi=12cot^(-1)18+8cot^(-1)57-5cot^(-1)239,

(20)

Strassnitzky's formula

 1/4pi=cot^(-1)2+cot^(-1)5+cot^(-1)8,

(21)

which was used by Dase (Borwein and Bailey 2003, p. 106), and the following:

1/4pi = 6cot^(-1)8+2cot^(-1)57+cot^(-1)239

(22)

1/4pi = 4cot^(-1)5-cot^(-1)70+cot^(-1)99

(23)

1/4pi = 8cot^(-1)10-cot^(-1)239-4cot^(-1)515

(24)

1/4pi = 5cot^(-1)7+4cot^(-1)53+2cot^(-1)4443

(25)

1/4pi = 3cot^(-1)4+cot^(-1)20+cot^(-1)1985

(26)

The first is due to Størmer, the second due to Rutherford, and the last appears in Borwein and Bailey (2003, p. 107). However, there are many other such formulas, a total of 105 of which are tabulated by Weisstein.

A total of 90 five-term Machin-like formulas are tabulated by Weisstein, including the two given by Borwein and Bailey (2003, pp. 62 and 111)

1/4pi = 12cot^(-1)49+32cot^(-1)57-5cot^(-1)239+12cot^(-1)110443

(27)

1/4pi = 44cot^(-1)57+7cot^(-1)239-12cot^(-1)682+24cot^(-1)12943,

(28)

the first of which was found by high school teacher K. Takano in 1982 and the second of which was known to Störmer in 1896.

Using trigonometric identities such as

 cot^(-1)x=2cot^(-1)(2x)-cot^(-1)(4x^3+3x),

(29)

it is possible to generate an infinite sequence of Machin-like formulas. Systematic searches therefore most often concentrate on formulas with particularly "nice" properties (such as "efficiency").

The efficiency of a generalized Machin-like formula (possibly with rational, quadratic surd, or other inverse cotangent arguments) is the time it takes to calculate pi with the power series for inverse cotangent given by

 pi=a_1cot^(-1)b_1+a_2cot^(-1)b_2+...,

(30)

and can be roughly characterized using Lehmer's "measure" formula

 e=sum1/(log_(10)b_i)

(31)

(Lehmer 1938). The number of terms required to achieve a given precision is roughly proportional to e, so lower e-values correspond to better sums. The best currently known efficiency is 1.51244, which is achieved by the 6-term series

 1/4pi=183cot^(-1)239+32cot^(-1)1023-68cot^(-1)5832 
 +12cot^(-1)110443-12cot^(-1)4841182-100cot^(-1)6826318

(32)

discovered by C.-L. Hwang (1997). Hwang (1997) also discovered the remarkable identities

 1/4pi=Pcot^(-1)2-Mcot^(-1)3+Lcot^(-1)5+Kcot^(-1)7+(N+K+L-2M+3P-5)cot^(-1)8+(2N+M-P+2-L)cot^(-1)18-(2P-3-M+L+K-N)cot^(-1)57-Ncot^(-1)239,

(33)

where KLMN, and P are positive integers, and

 1/4pi=(N+2)cot^(-1)2-Ncot^(-1)3-(N+1)cot^(-1)N.

(34)

The following table gives the number N(n) of Machin-like formulas of n terms in the compilation by Weisstein. Except for previously known identities (which are included), the criteria for inclusion are the following:

1. first term <8 digits: measure <1.8.

2. first term = 8 digits: measure <1.9.

3. first term = 9 digits: measure <2.0.

4. first term =10 digits: measure <2.0.

n N(n) mine
1 1 0
2 4 1.85113
3 106 1.78661
4 39 1.58604
5 90 1.63485
6 120 1.51244
7 113 1.54408
8 18 1.65089
9 4 1.72801
10 78 1.63086
11 34 1.6305
12 188 1.67458
13 37 1.71934
14 5 1.75161
15 24 1.77957
16 51 1.81522
17 5 1.90938
18 570 1.87698
19 1 1.94899
20 11 1.95716
21 1 1.98938
Total 1500 1.51244

REFERENCES:

Arndt, J. "Arctan Formulas." http://www.jjj.de/hfloat/jjf.ps.

Arndt, J. "Big ArcTan Formula Bucket." http://www.jjj.de/hfloat/fox.ps.

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 347-359, 1987.

Berstel, J.; Pin, J.-E.; and Pocchiola, M. Mathématiques et informatique: Problémes résolus. New York: McGraw-Hill, 1991.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.

Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 241-248, 1996.

Gourdon, X. and Sebah, P. "Collection of Series for pi." http://numbers.computation.free.fr/Constants/Pi/piSeries.html.

Hwang, C.-L. "More Machin-Type Identities." Math. Gaz. 81, 120-121, 1997.

Lehmer, D. H. "On Arccotangent Relations for pi." Amer. Math. Monthly 45, 657-664, 1938.

Lewin, L. Polylogarithms and Associated Functions. New York: North-Holland, 1981.

Lewin, L. Structural Properties of Polylogarithms. Providence, RI: Amer. Math. Soc., 1991.

Nielsen, N. Der Euler'sche Dilogarithms. Leipzig, Germany: Halle, 1909.

Séroul, R. "Machin Formulas." §9.3 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 240-252, 2000.

Størmer, C. "Sur l'Application de la Théorie des Nombres Entiers Complexes à la Solution en Nombres Rationnels x_1x_2, ..., c_1c_2, ..., k de l'Equation...." Archiv for Mathematik og Naturvidenskab B 19, 75-85, 1896.

Todd, J. "A Problem on Arc Tangent Relations." Amer. Math. Monthly 56, 517-528, 1949.

Wetherfield, M. "The Enhancement of Machin's Formula by Todd's Process." Math. Gaz. 80, 333-344, 1996.

Wetherfield, M. "Machin Revisited." Math. Gaz. 81, 121-123, 1997.

Williams, R. "Arctangent Formulas for Pi." http://www.cacr.caltech.edu/~roy/upi/pi.formulas.html

EN

تصفح الموقع بالشكل العمودي