تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Continued Fraction Constants
المؤلف: Borwein, J.; Bailey, D.; and Girgensohn, R.
المصدر: Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters
الجزء والصفحة: ...
28-4-2020
720
A number of closed-form constants can be obtained for generalized continued fractions having particularly simple partial numerators and denominators.
The Ramanujan continued fractions provide a fascinating class of continued fraction constants. The Trott constants are unexpected constants whose partial numerators and denominators correspond to their decimal digits (though to achieve this, it is necessary to allow some partial numerators to equal 0).
The first in a series of other famous continued fraction constants is the infinite regular continued fraction
(1) |
|||
(2) |
The first few convergents of the constant are 0, 1, 2/3, 7/10, 30/43, 157/225, 972/1393, 6961/9976, ... (OEIS A001053 and A001040).
Both numerator and denominator satisfy the recurrence relation
(3) |
where has the initial conditions , and has the initial conditions , . These can be solved exactly to yield
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
where is a modified Bessel function of the first kind and is a modified Bessel function of the second kind. Therefore, as , the infinite continued fraction is given by
(8) |
|||
(9) |
|||
(10) |
(OEIS A052119; Lehmer 1973, Rabinowitz 1990; Borwein et al. 2004, p. 35).
The related constant defined by the generalized continued fraction
(11) |
|||
(12) |
has th convergent is given by
(13) |
where is the gamma function and is the subfactorial. The first few convergents are therefore 1, 1/2, 3/5, 11/19, 53/91, 103/177, ... (OEIS A053557 and A103816). As , this gives the value
(14) |
|||
(15) |
(OEIS A073333).
Another similar continued fraction constant that can be computed in closed form is
(16) |
|||
(17) |
|||
(18) |
|||
(19) |
(OEIS A111129), where erfc is the complementary error function. No closed form is known for the convergents, but for , 2, ..., the first few convergents are 1, 1/3, 2/3, 4/9, 7/12, 19/39, 68/123, ... (OEIS A225435 and A225436).
Another closed-form continued fraction is given by
(20) |
|||
(21) |
|||
(22) |
|||
(23) |
(OEIS A113011). The first few convergents are 5/3, 29/19, 233/151, 2329/1511, 27949/18131, 78257/50767, ... (OEIS A113012 and A113013).
The general infinite continued fraction with partial quotients that are in arithmetic progression is given by
(24) |
(Schroeppel 1972) for real and .
Perron (1954-57) discusses continued fractions having terms even more general than the arithmetic progression and relates them to various special functions. He does not, however, appear to specifically consider equation (24).
REFERENCES:
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 34-35, 2004.
Finch, S. R. "Euler-Gompertz Constant." §6.2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 423-428, 2003.
Guy, R. K. "Review: The Mathematics of Plato's Academy." Amer. Math. Monthly 97, 440-443, 1990.
Lehmer, D. H. "Continued Fractions Containing Arithmetic Progressions." Scripta Math. 29, 17-24, 1973.
Perron, O. Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte Aufl. Stuttgart, Germany: Teubner, 1954-57.
Rabinowitz, S. Problem E3264. "Asymptotic Estimates from Convergents of a Continued Fraction." Amer. Math. Monthly 97, 157-159, 1990.
Schroeppel, R. Item 99 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 36, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/cf.html#item99.
Sloane, N. J. A. Sequences A001040/M2863, A001053/M1783, A052119, A053557, A073333, A103816, A111129, A113011, A113012, A113013, A225435, and A2225436 in "The On-Line Encyclopedia of Integer Sequences."