EN

الرئيسية

الأخبار

صور

فيديو

صوت

أقلام

مفتاح

رشفات

مشكاة

منشور

اضاءات

قصص


المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Quantum Stochastic Calculus

المؤلف:  Itô, K.

المصدر:  "On Stochastic Differential Equations." Mem. Amer. Math. Soc. No. 4, 1951.

الجزء والصفحة:  ...

14-7-2020

951

Quantum Stochastic Calculus

Let B_t=<span style={B_t(omega)/omega in Omega}" src="https://mathworld.wolfram.com/images/equations/QuantumStochasticCalculus/Inline1.gif" style="height:15px; width:117px" />, t>=0, be one-dimensional Brownian motion. Integration with respect to B_t was defined by Itô (1951). A basic result of the theory is that stochastic integral equations of the form

 X_t=X_0+int_0^tb(s,X_s)ds+int_0^tsigma(s,X_s)dB_s

(1)

can be interpreted as stochastic differential equations of the form

 dX_t=b(t,X_t)dt+sigma(t,X_t)dB_t,

(2)

where differentials are handled with the use of Itô's formula

(dB_t)^2 = dt

(3)

dB_tdt = dtdB_t=(dt)^2=0.

(4)

Hudson and Parthasarathy (1984) obtained a Fock space representation of Brownian motion and Poisson processes. The boson Fock space Gamma=Gamma(L^2(R^+,C)) over L^2(R^+,C) is the Hilbert space completion of the linear span of the exponential vectors psi(f) under the inner product

 <psi(f),psi(g)>=e^(<f,g>),

(5)

where f,g in L^2(R^+,C) and <f,g>=int_0^(+infty)f^_(s)g(s)ds and z^_ is the complex conjugate of z.

The annihilation, creation and conservation operators A(f)A^|(f) and Lambda(F) respectively, are defined on the exponential vectors psi(g) of Gamma as follows,

A_tpsi(g) = int_0^tg(s)dspsi(g)

(6)

A_t^|psi(g) = partial/(partialepsilon)|_(epsilon=0)psi(g+epsilonchi_([0,t]))

(7)

Lambda_tpsi(g) = partial/(partialepsilon)|_(epsilon=0)psi(e^(epsilonchi_([0,t])))g).

(8)

The basic quantum stochastic differentials dA_tdA_t^|, and dLambda_t are defined as follows,

dA_t = A_(t+dt)-A_t

(9)

dA_t^| = A_(t+dt)^|-A_t^|

(10)

dLambda_t = Lambda_(t+dt)-Lambda_t.

(11)

Hudson and Parthasarathy (1984) defined stochastic integration with respect to the noise differentials of Definition 3 and obtained the Itô multiplication table

· dA_t^| dLambda_t dA_t dt
dA_t^| 0 0 0 0
dLambda_t dA_t^| dLambda_t 0 0
dA_t dt dA_t 0 0
dt 0 0 0 0

The two fundamental theorems of the Hudson-Parthasarathy quantum stochastic calculus give formulas for expressing the matrix elements of quantum stochastic integrals in terms of ordinary Lebesgue integrals. The first theorem states that is

 M(t)=int_0^tE(s)dLambda(s)+F(s)dA(s) 
 +G(s)dA^|(s)+H(s)ds,

(12)

where EFGH are (in general) time-dependent adapted processes. Let also u tensor psi(f) and v tensor psi(g) be in the exponential domain of H tensor Gamma, then

 <u tensor psi(f),M(t)v tensor psi(g)> 
=int_0^t<u tensor psi(f),(f^_(s)g(s)E(s)
 +g(s)F(s)+f^_(s)G(s)+H(s))v tensor psi(g)>ds

(13)

The second theorem states that if

 M(t)=int_0^tE(s)dLambda(s)+F(s)dA(s)+G(s)dA^|(s)+H(s)ds

(14)

and

(15)

where EFGH are (in general) time dependent adapted processes and also u tensor psi(f) and v tensor psi(g) be in the exponential domain of H tensor Gamma, then

(16)

The fundamental result that connects classical with quantum stochastics is that the processes B_t and P_t defined by

 B_t=A_t+A_t^|

(17)

and

 P_t=Lambda_t+sqrt(lambda)(A_t+A_t^|)+lambdat

(18)

are identified, through their statistical properties, e.g., their vacuum characteristic functionals

 <psi(0),e^(isB_t)psi(0)>=e^(-ts^2/2)

(19)

and

 <psi(0),e^(isP_t)psi(0)>=e^(lambda(e^(is)-1)t)

(20)

with Brownian motion and a Poisson process of intensity lambda, respectively.

Within the framework of Hudson-Parthasarathy quantum stochastic calculus, classical quantum mechanical evolution equations take the form

dU_t = -[(iH+1/2L^*L)dt+L^*WdA_t-LdA_t^|+(1-W)dLambda_t]U_t

(21)

U_0 = 1,

(22)

where, for each t>=0U_t is a unitary operator defined on the tensor product H tensor Gamma(L^2(R^+,C)) of a system Hilbert space H and the noise (or reservoir) Fock space Gamma. Here, HLW are in B(H), the space of bounded linear operators on H, with W unitary and H self-adjoint. Notice that for L=W=-1, equation (21) reduces to a classical stochastic differential equation of the form (2). Here and in what follows we identify time-independent, bounded, system space operators X with their ampliation X tensor 1 to H tensor Gamma(L^2(R^+,C)).

The quantum stochastic differential equation (analogue of the Heisenberg equation for quantum mechanical observables) satisfied by the quantum flow

 j_t(X)=U_t^*XU_t,

(23)

where X is a bounded system space operator, is

dj_t(X) = j_t(i[H,X]-1/2(L^*LX+XL^*L-2L^*XL))dt+j_t([L^*,X]W)dA_t+j_t(W^*[X,L])dA_t^|+j_t(W^*XW-X)dLambda_t

(24)

j_0(X) = X

(25)

for t in [0,T].

The commutation relations associated with the operator processes A_tA_t^| are the canonical (or Heisenberg) commutation relations, namely

 [A_t,A_t^|]=tI.

(26)

 


REFERENCES:

Hudson, R. L. and Parthasarathy, K. R. "Quantum Ito's Formula and Stochastic Evolutions." Comm. Math. Phys. 93, 301-323, 1984.

Itô, K. "On Stochastic Differential Equations." Mem. Amer. Math. Soc. No.  4, 1951.

Parthasarathy, K. R. An Introduction to Quantum Stochastic Calculus. Boston, MA: Birkhäuser, 1992.

EN

تصفح الموقع بالشكل العمودي