تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Normal Number
المؤلف: Bailey, D. H. and Crandall, R. E.
المصدر: "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10
الجزء والصفحة: ...
28-7-2020
790
A number is said to be simply normal to base if its base- expansion has each digit appearing with average frequency tending to .
A normal number is an irrational number for which any finite pattern of numbers occurs with the expected limiting frequency in the expansion in a given base (or all bases). For example, for a normal decimal number, each digit 0-9 would be expected to occur 1/10 of the time, each pair of digits 00-99 would be expected to occur 1/100 of the time, etc. A number that is normal in base- is often called -normal.
A number that is -normal for every , 3, ... is said to be absolutely normal (Bailey and Crandall 2003).
As stated by Kac (1959), "As is often the case, it is much easier to prove that an overwhelming majority of objects possess a certain property than to exhibit even one such object....It is quite difficult to exhibit a 'normal' number!" (Stoneham 1970).
If a real number is -normal, then it is also -normal for and integers (Kuipers and Niederreiter 1974, p. 72; Bailey and Crandall 2001). Furthermore, if and are rational with and is -normal, then so is , while if is an integer, then is also -normal (Kuipers and Niederreiter 1974, p. 77; Bailey and Crandall 2001).
Determining if numbers are normal is an unresolved problem. It is not even known if fundamental mathematical constants such as pi (Wagon 1985, Bailey and Crandall 2003), the natural logarithm of 2 (Bailey and Crandall 2003), Apéry's constant (Bailey and Crandall 2003), Pythagoras's constant (Bailey and Crandall 2003), and e are normal, although the first 30 million digits of are very uniformly distributed (Bailey 1988).
While tests of for (Pythagoras's constant digits, 3 (Theodorus's constant digits, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15 indicate that these square roots may be normal (Beyer et al. 1970ab), normality of these numbers has (possibly until recently) also not been proven. Isaac (2005) recently published a preprint that purports to show that each number of the form for not a perfect square is simply normal to the base 2. Unfortunately, this work uses a nonstandard approach that appears rather cloudy to at least some experts who have looked at it.
While Borel (1909) proved the normality of almost all numbers with respect to Lebesgue measure, with the exception of a number of special classes of constants (e.g., Stoneham 1973, Korobov 1990, Bailey and Crandall 2003), the only numbers known to be normal (in certain bases) are artificially constructed ones such as the Champernowne constant and the Copeland-Erdős constant. In particular, the binary Champernowne constant
(1) |
(OEIS A030190) is 2-normal (Bailey and Crandall 2001).
Bailey and Crandall (2001) showed that, subject to an unproven but reasonable hypothesis related to pseudorandom number generators, the constants , , and would be 2-normal, where is Apéry's constant. Stoneham (1973) proved that the so-called Stoneham numbers
(2) |
where and are relatively prime positive integers, are -normal whenever is an odd prime and is a primitive root of . This result was extended by Bailey and Crandall (2003), who showed that is normal for all positive integers provided only that and are relatively prime.
Korobov (1990) showed that the constants
(3) |
are -normal for positive integers and and relatively prime, a result reproved using completely different techniques by Bailey and Crandall (2003). Amazingly, Korobov (1990) also gave an explicit algorithm for computing terms in the continued fraction of .
Bailey and Crandall (2003) also established -normality for constants of the form for certain sequences of integers and .
REFERENCES:
Bailey, D. H. "The Computation of to Decimal Digit using Borwein's' Quartically Convergent Algorithm." Math. Comput. 50, 283-296, 1988.
Bailey, D. H. and Crandall, R. E. "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001. https://www.nersc.gov/~dhbailey/dhbpapers/baicran.pdf.
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.
Beyer, W. A.; Metropolis, N.; and Neergaard, J. R. "Square Roots of Integers 2 to 15 in Various Bases 2 to 10: 88062 Binary Digits or Equivalent." Math. Comput. 23, 679, 1969.
Beyer, W. A.; Metropolis, N.; and Neergaard, J. R. "Statistical Study of Digits of Some Square Roots of Integers in Various Bases." Math. Comput. 24, 455-473, 1970a.
Beyer, W. A.; Metropolis, N.; and Neergaard, J. R. "The Generalized Serial Test Applied to Expansions of Some Irrational Square Roots in Various Bases." Math. Comput. 24, 745-747, 1970b.
Borel, É. "Les probabilités dénombrables et leurs applications arithmétiques." Rend. Circ. Mat. Palermo 27, 247-271, 1909.
Champernowne, D. G. "The Construction of Decimals Normal in the Scale of Ten." J. London Math. Soc. 8, 254-260, 1933.
Copeland, A. H. and Erdős, P. "Note on Normal Numbers." Bull. Amer. Math. Soc. 52, 857-860, 1946.
Gibbs, W. W. "A Digital Slice of Pi. The New Way to do Pure Math: Experimentally." Sci. Amer. 288, 23-24, May 2003.
Good, I. "Normal Recurring Decimals." J. London Math. Soc. 21, 167-169, 1946.
Good, I. J. and Gover, T. N. "The Generalized Serial Test and the Binary Expansion of ." J. Roy. Statist. Soc. Ser. A 130, 102-107, 1967.
Good, I. J. and Gover, T. N. "Corrigendum." J. Roy. Statist. Soc. Ser. A 131, 434, 1968.
Isaac, R. "On the Simple Normality to Base 2 of , for Not a Perfect Square." 16 Dec 2005. https://arxiv.org/abs/math.NT/0512404.
Kac, M. Statistical Independence in Probability, Analysis and Number Theory. Washington, DC: Math. Assoc. Amer., 1959.
Korobov, N. "Continued Fractions of Certain Normal Numbers." Math. Zametki 47, 28-33, 1990. English translation in Math. Notes Acad. Sci. USSR 47, 128-132, 1990.
Kuipers, L. and Niederreiter, H. Uniform Distribution of Sequences. New York: Wiley, 1974.
Postnikov, A. G. "Ergodic Problems in the Theory of Congruences and of Diophantine Approximations." Proc. Steklov Inst. Math. 82, 1966.
Sloane, N. J. A. Sequence A030190 in "The On-Line Encyclopedia of Integer Sequences."
Stoneham, R. "A General Arithmetic Construction of Transcendental Non-Liouville Normal Numbers from Rational Functions." Acta Arith. 16, 239-253, 1970. https://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1631.pdf.
Stoneham, R. "On Absolute -Normality in the Rational Fractions with Applications to Normal Numbers." Acta Arith. 22, 277-286, 1973. https://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1632.pdf.
Wagon, S. "Is Normal?" Math. Intel. 7, 65-67, 1985.
Weisstein, E. W. "Bailey and Crandall Discover a New Class of Normal Numbers." MathWorld Headline News, Oct. 4, 2001. https://mathworld.wolfram.com/news/2001-10-04/normal/.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 26, 1986.