1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Round Number

المؤلف:  Hardy, G. H

المصدر:  "Round Numbers." Ch. 3 in Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea

الجزء والصفحة:  ...

8-10-2020

852

Round Number

A round number is a number that is the product of a considerable number of comparatively small factors (Hardy 1999, p. 48). Round numbers are very rare. As Hardy (1999, p. 48) notes, "Half the numbers are divisible by 2, one-third by 3, one-sixth by both 2 and 3, and so on. Surely, then we may expect most numbers to have a large number of factors. But the facts seem to show the opposite."

A positive integer n is sometimes said to be round (or "square root-smooth") if it has no prime factors greater than sqrt(n). The first few such numbers are 1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, ... (OEIS A048098). Using this definition, an asymptotic formula for the number of round integers less than or equal to a positive real number x is given by

 N(x)∼(1-ln2)x+O(x/lnx)

(Hildebrand).

A different meaning of "round" is used when speaking of "rounding a number."


REFERENCES:

Hardy, G. H. "Round Numbers." Ch. 3 in Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 48-57, 1999.

Hildebrand, A. J. "Analytic Number Theory Problem Set 4. Solutions." https://www.math.uiuc.edu/~hildebr/531/hw4sol.pdf.

Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, pp. 89-90, 1998.

Sloane, N. J. A. Sequences A048098 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي