1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Harmonic Series of Primes

المؤلف:  Hardy, G. H.

المصدر:  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

الجزء والصفحة:  ...

12-10-2020

1052

Harmonic Series of Primes

Like the entire harmonic series, the harmonic series

 sum_(k=1)^infty1/(p_k)=infty

(1)

taken over all primes p_k also diverges, as first shown by Euler in 1737 (Nagell 1951, p. 59; Hardy and Wright 1979, pp. 17 and 22; Wells 1986, p. 41; Havil 2003, pp. 28-31), although it does so very slowly. The sum exceeds 1, 2, 3, ... after 3, 59, 361139, ... (OEIS A046024) primes.

Its asymptotic behavior is given by

 sum_(p prime)^x1/p=lnlnx+B_1+o(1),

(2)

where

 B_1=0.2614972128...

(3)

(OEIS A077761) is the Mertens constant (Hardy and Wright 1979, p. 351; Hardy 1999, p. 50; Havil 2003, p. 64).


REFERENCES:

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Hardy, G. H. and Wright, E. M. "Prime Numbers" and "The Sequence of Primes." §1.2 and 1.4 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 1-4, 17, 22, and 251, 1979.

Havil, J. "Harmonic Series of Primes." §3.2 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 28-31, 2003.

Nagell, T. Introduction to Number Theory. New York: Wiley, 1951.

Sloane, N. J. A. Sequences A046024 and A077761 in "The On-Line Encyclopedia of Integer Sequences."

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 41, 1986.

EN

تصفح الموقع بالشكل العمودي