1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Lagrange,s Four-Square Theorem

المؤلف:  Hardy, G. H.

المصدر:  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

الجزء والصفحة:  ...

27-12-2020

915

Lagrange's Four-Square Theorem

A theorem, also known as Bachet's conjecture, which Bachet inferred from a lack of a necessary condition being stated by Diophantus. It states that every positive integer can be written as the sum of at most four squares. Although the theorem was proved by Fermat using infinite descent, the proof was suppressed. Euler was unable to prove the theorem. The first published proof was given by Lagrange in 1770 and made use of the Euler four-square identity.

Lagrange proved that g(2)=4, where 4 may be reduced to 3 except for numbers of the form 4^n(8k+7), as proved by Legendre in 1798 (Nagell 1951, p. 194; Wells 1986, pp. 48 and 56; Hardy 1999, p. 12; Savin 2000).


REFERENCES:

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Hardy, G. H. and Wright, E. M. "The Four-Square Theorem." §20.5 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 302-303, 1979.

Landau, E. Vorlesungen über Zahlentheorie, Vol. 1. New York: Chelsea, pp. 114-122, 1970.

Nagell, T. "Bachet's Theorem." §55 in Introduction to Number Theory. New York: Wiley, pp. 191-195, 1951.

Niven, I. M.; Zuckerman, H. S.; and Montgomery, H. L. An Introduction to the Theory of Numbers, 5th ed. New York: Wiley, 1991.

Savin, A. "Shape Numbers." Quantum 11, 14-18, 2000.

Séroul, R. "Sums of Four Squares." §8.13 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 207-208, 2000.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 48, 1986.

EN

تصفح الموقع بالشكل العمودي