تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Beta Distribution
المؤلف: Abramowitz, M. and Stegun, I. A.
المصدر: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة: ...
3-4-2021
3024
A general type of statistical distribution which is related to the gamma distribution. Beta distributions have two free parameters, which are labeled according to one of two notational conventions. The usual definition calls these and , and the other uses and (Beyer 1987, p. 534). The beta distribution is used as a prior distribution for binomial proportions in Bayesian analysis (Evans et al. 2000, p. 34). The above plots are for various values of with and ranging from 0.25 to 3.00.
The domain is , and the probability function and distribution function are given by
(1) |
|||
(2) |
|||
(3) |
where is the beta function, is the regularized beta function, and . The beta distribution is implemented in the Wolfram Language as BetaDistribution[alpha, beta].
The distribution is normalized since
(4) |
The characteristic function is
(5) |
|||
(6) |
where is a confluent hypergeometric function of the first kind.
The raw moments are given by
(7) |
|||
(8) |
(Papoulis 1984, p. 147), and the central moments by
(9) |
where is a hypergeometric function.
The mean, variance, skewness, and kurtosis excess are therefore given by
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
The mode of a variate distributed as is
(14) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 944-945, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 534-535, 1987.
Evans, M.; Hastings, N.; and Peacock, B. "Beta Distribution." Ch. 5 in Statistical Distributions, 3rd ed. New York: Wiley, pp. 34-42, 2000.
Jambunathan, M. V. "Some Properties of Beta and Gamma Distributions." Ann. Math. Stat. 25, 401-405, 1954.
Kolarski, I. "On Groups of Independent Random Variables whose Product Follows the Beta Distribution." Colloq. Math. IX Fasc. 2, 325-332, 1962.
Krysicki, W. "On Some New Properties of the Beta Distribution." Stat. Prob. Let. 42, 131-137, 1999.
Papoulis, A. The Fourier Integral and Its Applications. New York: McGraw-Hill, 1962.