1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الاحتمالات و الاحصاء :

Student,s t-Distribution

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

14-4-2021

3119

Student's t-Distribution

 StudentsTDistribution

A statistical distribution published by William Gosset in 1908. His employer, Guinness Breweries, required him to publish under a pseudonym, so he chose "Student." Given N independent measurements x_i, let

 t=(x^_-mu)/(s/sqrt(N)),

(1)

where mu is the population mean, x^_ is the sample mean, and s is the estimator for population standard deviation (i.e., the sample variance) defined by

 s^2=1/(N-1)sum_(i=1)^N(x_i-x^_)^2.

(2)

Student's t-distribution is defined as the distribution of the random variable t which is (very loosely) the "best" that we can do not knowing sigma.

The Student's t-distribution with n degrees of freedom is implemented in the Wolfram Language as StudentTDistribution[n].

If sigma=st=z and the distribution becomes the normal distribution. As N increases, Student's t-distribution approaches the normal distribution.

Student's t-distribution can be derived by transforming Student's z-distribution using

 z=(x^_-mu)/s,

(3)

and then defining

 t=zsqrt(n-1).

(4)

The resulting probability and cumulative distribution functions are

f_r(t) = (Gamma[1/2(r+1)])/(sqrt(rpi)Gamma(1/2r)(1+(t^2)/r)^((r+1)/2))

(5)

= ((r/(r+t^2))^((1+r)/2))/(sqrt(r)B(1/2r,1/2))

(6)

F_r(t) = 1/2+1/2[I(1;1/2r,1/2)-I(r/(r+t^2),1/2r,1/2)]sgn(t)

(7)

= 1/2-(itB(-(t^2)/r;1/2,1/2(1-r))Gamma(1/2(r+1)))/(2sqrt(pi)|t|Gamma(1/2r))

(8)

= 1/2+(tGamma(1/2(r+1))_2F_1(1/2,1/2(r+1);3/2;-(t^2)/r))/(sqrt(pir)Gamma(1/2r)),

(9)

where

 r=n-1

(10)

is the number of degrees of freedom, -infty<t<inftyGamma(z) is the gamma function, B(a,b) is the beta function, _2F_1(a,b;c;z) is a hypergeometric function, and I(z;a,b) is the regularized beta function defined by

 I(z;a,b)=(B(z;a,b))/(B(a,b)).

(11)

The mean, variance, skewness, and kurtosis excess of Student's t-distribution are

mu = 0

(12)

sigma^2 = r/(r-2)

(13)

gamma_1 = 0

(14)

gamma_2 = 6/(r-4).

(15)

StudentsTCharacteristics

The characteristic functions phi_n(t) for the first few values of n are

phi_1(t) = e^(-|t|)

(16)

phi_2(t) = sqrt(2)|t|K_1(sqrt(2)|t|)

(17)

phi_3(t) = e^(-sqrt(3)|t|)(1+sqrt(3)|t|)

(18)

phi_4(t) = 2t^2K_2(2|t|)

(19)

phi_5(t) = 1/3e^(-sqrt(5)|t|)(3+3sqrt(5)|t|+5t^2),

(20)

and so on, where K_n(x) is a modified Bessel function of the second kind.

The following table gives confidence intervals, i.e., values of x such that the distribution function D_r(x) equals various probabilities for various small values of the numbers of degrees of freedom r. Beyer (1987, p. 571) gives 60%, 70%, 90%, 95%, 97.5%, 99%, 99.5%, and 99.95% confidence intervals, and Goulden (1956) gives 50%, 90%, 95%, 98%, 99%, and 99.9% confidence intervals.

r 90% 95% 97.5% 99.5%
1 3.07768 6.31375 12.7062 63.6567
2 1.88562 2.91999 4.30265 9.92484
3 1.63774 2.35336 3.18245 5.84091
4 1.53321 2.13185 2.77645 4.60409
5 1.47588 2.01505 2.57058 4.03214
10 1.37218 1.81246 2.22814 3.16927
30 1.31042 1.69726 2.04227 2.75000
100 1.29007 1.66023 1.98397 2.62589
infty 1.28156 1.64487 1.95999 2.57588

A multivariate form of the Student's t-distribution with correlation matrix r and m degrees of freedom is implemented as MultivariateTDistribution[rm] in the Wolfram Language package MultivariateStatistics` .

The so-called A(t|n) distribution is useful for testing if two observed distributions have the same mean. A(t|n) gives the probability that the difference in two observed means for a certain statistic t with n degrees of freedom would be smaller than the observed value purely by chance:

 A(t|n)=1/(sqrt(n)B(1/2,1/2n))int_(-t)^t(1+(x^2)/n)^(-(1+n)/2)dx.

(21)

Let X be a normally distributed random variable with mean 0 and variance sigma^2, let Y^2/sigma^2 have a chi-squared distribution with n degrees of freedom, and let X and Y be independent. Then

 t=(Xsqrt(n))/Y

(22)

is distributed as Student's t with n degrees of freedom.


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 948-949, 1972.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 536 and 571, 1987.

Fisher, R. A. "Applications of 'Student's' Distribution." Metron 5, 3-17, 1925.

Fisher, R. A. "Expansion of 'Student's' Integral in Powers of n-1." Metron 5, 22-32, 1925.

Fisher, R. A. Statistical Methods for Research Workers, 10th ed. Edinburgh: Oliver and Boyd, 1948.

Goulden, C. H. Table A-3 in Methods of Statistical Analysis, 2nd ed. New York: Wiley, p. 443, 1956.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 219-223, 1992.

Shaw, W. "New Methods for Managing 'Student's' T-Distribution." Submitted to J. Comput. Finance. https://www.mth.kcl.ac.uk/~shaww/web_page/papers/Tdistribution06.pdf.

Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 116-117, 1992.

Student. "The Probable Error of a Mean." Biometrika 6, 1-25, 1908.

EN

تصفح الموقع بالشكل العمودي