تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Calabi-Yau Space
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
4-7-2021
1221
Calabi-Yau spaces are important in string theory, where one model posits the geometry of the universe to consist of a ten-dimensional space of the form , where is a four dimensional manifold (space-time) and is a six dimensional compact Calabi-Yau space. They are related to Kummer surfaces. Although the main application of Calabi-Yau spaces is in theoretical physics, they are also interesting from a purely mathematical standpoint. Consequently, they go by slightly different names, depending mostly on context, such as Calabi-Yau manifolds or Calabi-Yau varieties.
Although the definition can be generalized to any dimension, they are usually considered to have three complex dimensions. Since their complex structure may vary, it is convenient to think of them as having six real dimensions and a fixed smooth structure.
A Calabi-Yau space is characterized by the existence of a nonvanishing harmonic spinor . This condition implies that its canonical bundle is trivial.
Consider the local situation using coordinates. In , pick coordinates and so that
(1) |
gives it the structure of . Then
(2) |
is a local section of the canonical bundle. A unitary change of coordinates , where is a unitary matrix, transforms by , i.e.,
(3) |
If the linear transformation has determinant 1, that is, it is a special unitary transformation, then is consistently defined as or as .
On a Calabi-Yau manifold , such a can be defined globally, and the Lie group is very important in the theory. In fact, one of the many equivalent definitions, coming from Riemannian geometry, says that a Calabi-Yau manifold is a -dimensional manifold whose holonomy group reduces to . Another is that it is a calibrated manifold with a calibration form , which is algebraically the same as the real part of
(4) |
Often, the extra assumptions that is simply connected and/or compact are made.
Whatever definition is used, Calabi-Yau manifolds, as well as their moduli spaces, have interesting properties. One is the symmetries in the numbers forming the Hodge diamond of a compact Calabi-Yau manifold. It is surprising that these symmetries, called mirror symmetry, can be realized by another Calabi-Yau manifold, the so-called mirror of the original Calabi-Yau manifold. The two manifolds together form a mirror pair. Some of the symmetries of the geometry of mirror pairs have been the object of recent research.