1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التبلوجيا :

Euler Characteristic

المؤلف:  Alexandroff, P. S.

المصدر:  Combinatorial Topology. New York: Dover, 1998.

الجزء والصفحة:  ...

31-5-2021

4097

Euler Characteristic

Let a closed surface have genus g. Then the polyhedral formula generalizes to the Poincaré formula

 chi(g)=V-E+F,

(1)

where

 chi(g)=2-2g

(2)

is the Euler characteristic, sometimes also known as the Euler-Poincaré characteristic. The polyhedral formula corresponds to the special case g=0.

The only compact closed surfaces with Euler characteristic 0 are the Klein bottle and torus (Dodson and Parker 1997, p. 125). The following table gives the Euler characteristics for some common surfaces (Henle 1994, pp. 167 and 295; Alexandroff 1998, p. 99).

surface chi
cylinder 0
double torus -2
Klein bottle 0
Möbius strip 0
projective plane 1
sphere 2
torus 0

In terms of the integral curvature of the surface K,

 intintKda=2pichi.

(3)

The Euler characteristic is sometimes also called the Euler number. It can also be expressed as

 chi=p_0-p_1+p_2,

(4)

where p_i is the ith Betti number of the space.


REFERENCES:

Alexandroff, P. S. Combinatorial Topology. New York: Dover, 1998.

Armstrong, M. A. "Euler Characteristics." §7.3 in Basic Topology, rev. ed. New York: Springer-Verlag, pp. 158-161, 1997 Coxeter, H. S. M. "Poincaré's Proof of Euler's Formula." Ch. 9 in Regular Polytopes, 3rd ed. New York: Dover, pp. 165-172, 1973.

Dodson, C. T. J. and Parker, P. E. A User's Guide to Algebraic Topology. Dordrecht, Netherlands: Kluwer, 1997.

Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 635, 1997.

Henle, M. A Combinatorial Introduction to Topology. New York: Dover, p. 167, 1994.

EN

تصفح الموقع بالشكل العمودي