تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Euler Number
المؤلف: Abramowitz, M. and Stegun, I. A.
المصدر: "Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula." §23.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة: ...
10-5-2021
3541
The Euler numbers, also called the secant numbers or zig numbers, are defined for by
(1) |
(2) |
where is the hyperbolic secant and sec is the secant. Euler numbers give the number of odd alternating permutations and are related to Genocchi numbers. The base e of the natural logarithm is sometimes known as Euler's number.
A different sort of Euler number, the Euler number of a finite complex , is defined by
(3) |
This Euler number is a topological invariant.
To confuse matters further, the Euler characteristic is sometimes also called the "Euler number" and numbers produced by the prime-generating polynomial are sometimes called "Euler numbers" (Flannery and Flannery 2000, p. 47). In this work, primes generated by that polynomial are termed Euler primes, and prime Euler numbers are terms Euler number primes.
Some values of the (secant) Euler numbers are
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
|||
(15) |
(OEIS A000364).
The slightly different convention defined by
(16) |
|||
(17) |
is frequently used. These are, for example, the Euler numbers computed by the Wolfram Language function EulerE[n]. This definition has the particularly simple series definition
(18) |
and is equivalent to
(19) |
where is an Euler polynomial.
The number of decimal digits in for , 2, 4, ... are 1, 1, 1, 2, 4, 5, 7, 9, 11, 13, 15, 17, ... (OEIS A047893). The number of decimal digits in for , 1, ... are 1, 5, 139, 2372, 33699, ... (OEIS A103235).
The Euler numbers have the asymptotic series
(20) |
A more efficient asymptotic series is given by
(21) |
(P. Luschny, pers. comm., 2007).
Expanding for even gives the identity
(22) |
where the coefficient is interpreted as (Ely 1882; Fort 1948; Trott 2004, p. 69) and is a tangent number.
Stern (1875) showed that
(23) |
iff . This result had been previously stated by Sylvester in 1861, but without proof.
Shanks (1968) defines a generalization of the Euler numbers by
(24) |
Here,
(25) |
and is times the coefficient of in the series expansion of . A similar expression holds for , but strangely not for with . The following table gives the first few values of for , 1, ....
OEIS | ||
1 | A000364 | 1, 1, 5, 61, ... |
2 | A000281 | 1, 3, 57, 2763, ... |
3 | A000436 | 1, 8, 352, 38528, ... |
4 | A000490 | 1, 16, 1280, 249856, ... |
5 | A000187 | 2, 30, 3522, 1066590, ... |
6 | A000192 | 2, 46, 7970, 3487246, ... |
7 | A064068 | 1, 64, 15872, 9493504, ... |
8 | A064069 | 2, 96, 29184, 22634496, ... |
9 | A064070 | 2, 126, 49410, 48649086, ... |
10 | A064071 | 2, 158, 79042, 96448478, ... |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula." §23.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 804-806, 1972.
Caldwell, C. "The Top 20: Euler Irregular." http://primes.utm.edu/top20/page.php?id=25.
Conway, J. H. and Guy, R. K. In The Book of Numbers. New York: Springer-Verlag, pp. 110-111, 1996.
Ely, G. S. "Some Notes on the Numbers of Bernoulli and Euler." Amer. J. Math. 5, 337-341, 1882.
Fort, T. Finite Differences and Difference Equations in the Real Domain. Oxford, England: Clarendon Press, 1948.
Flannery, S. and Flannery, D. In Code: A Mathematical Journey. London: Profile Books, p. 47, 2000.
Guy, R. K. "Euler Numbers." §B45 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 101, 1994.
Hauss, M. Verallgemeinerte Stirling, Bernoulli und Euler Zahlen, deren Anwendungen und schnell konvergente Reihen für Zeta Funktionen. Aachen, Germany: Verlag Shaker, 1995.
Knuth, D. E. and Buckholtz, T. J. "Computation of Tangent, Euler, and Bernoulli Numbers." Math. Comput. 21, 663-688, 1967.
Munkres, J. R. Elements of Algebraic Topology. New York: Perseus Books Pub.,p. 124, 1993.
Shanks, D. "Generalized Euler and Class Numbers." Math. Comput. 21, 689-694, 1967.
Shanks, D. Corrigendum to "Generalized Euler and Class Numbers." Math. Comput. 22, 699, 1968.
Sloane, N. J. A. Sequences A000364/M4019, A014547, A047893, A092823, A103234, and A103235 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Euler Numbers, ." Ch. 5 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 39-42, 1987.
Stern, M. A. "Zur Theorie der Euler Schen Zahlen." J. reine angew. Math. 79, 67-98, 1875.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
Young, P. T. "Congruences for Bernoulli, Euler, and Stirling Numbers." J. Number Th. 78, 204-227, 1999.