Mergelyan,s Theorem
المؤلف:
Le Lionnais, F
المصدر:
Les nombres remarquables. Paris: Hermann
الجزء والصفحة:
...
23-7-2021
2249
Mergelyan's Theorem
Mergelyan's theorem can be stated as follows (Krantz 1999). Let
be compact and suppose
has only finitely many connected components. If
is holomorphic on the interior of
and if
, then there is a rational function
with poles in
such that
 |
(1)
|
A consequence is that if
{D_1,D_2,...}" src="https://mathworld.wolfram.com/images/equations/MergelyansTheorem/Inline8.gif" style="height:15px; width:100px" /> is an infinite set of disjoint open disks
of radius
such that the union is almost the unit disk. Then
 |
(2)
|
Define
 |
(3)
|
Then there is a number
such that
diverges for
and converges for
. The above theorem gives
 |
(4)
|
There exists a constant which improves the inequality, and the best value known is
 |
(5)
|
REFERENCES:
Krantz, S. G. "Mergelyan's Theorem." §11.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 146-147, 1999.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 36-37, 1983.
Mandelbrot, B. B. Fractals. San Francisco, CA: W. H. Freeman, p. 187, 1977.
Melzack, Z. A. "On the Solid Packing Constant for Circles." Math. Comput. 23, 1969.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة