تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
von Neumann-Bernays-Gödel Set Theory
المؤلف: Itô, K.
المصدر: "Bernays-Gödel Set Theory." §33C in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press
الجزء والصفحة: ...
30-12-2021
969
von Neumann-Bernays-Gödel set theory (abbreviated "NBG") is a version of set theory which was designed to give the same results as Zermelo-Fraenkel set theory, but in a more logically elegant fashion. It can be viewed as a conservative extension of Zermelo-Fraenkel set theory in the sense that a statement about sets is provable in NBG if and only if it is provable in Zermelo-Fraenkel set theory.
Zermelo-Fraenkel set theory is not finitely axiomatized. For example, the axiom of replacement is not really a single axiom, but an infinite family of axioms, since it is preceded by the stipulation that it is true "for any set-theoretic formula ." Montague (1961) proved that Zermelo-Fraenkel set theory is not finitely axiomatizable, i.e., there is no finite set of axioms which is logically equivalent to the infinite set of Zermelo-Fraenkel axioms. In contrast, von Neumann-Bernays-Gödel set theory has only finitely many axioms, and this was the main motivation in its construction. This was accomplished by extending the language of Zermelo-Fraenkel set theory to be capable of talking about set classes.
REFERENCES:
Itô, K. (Ed.). "Bernays-Gödel Set Theory." §33C in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, p. 148, 1986.
Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.
Montague, R. "Semantic Closure and Non-Finite Axiomatizability. I." In Infinitistic Methods, Proceedings of the Symposium on Foundations of Mathematics, (Warsaw, 2-9 September 1959). Oxford, England: Pergamon, pp. 45-69, 1961.