تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Set
المؤلف: Courant, R. and Robbins, H.
المصدر: "The Algebra of Sets." Supplement to Ch. 2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.
الجزء والصفحة: ...
17-1-2022
1992
A set is a finite or infinite collection of objects in which order has no significance, and multiplicity is generally also ignored (unlike a list or multiset). Members of a set are often referred to as elements and the notation is used to denote that is an element of a set . The study of sets and their properties is the object of set theory.
Older words for set include aggregate and set class. Russell also uses the unfortunate term manifold to refer to a set.
Historically, a single horizontal overbar was used to denote a set stripped of any structure besides order, and hence to represent the order type of the set. A double overbar indicated stripping the order from the set and hence represented the cardinal number of the set. This practice was begun by set theory founder Georg Cantor.
Symbols used to operate on sets include (which means "and" or intersection), and (which means "or" or union). The symbol is used to denote the set containing no elements, called the empty set.
There are a number of different notations related to the theory of sets. In the case of a finite set of elements, one often writes the collection inside curly braces, e.g.,
{1,2,3} " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation1.svg" style="height:20px; width:87px" /> |
(1) |
for the set of natural numbers less than or equal to three. Similar notation can be used for infinite sets provided that ellipses are used to signify infiniteness, e.g.,
{3,4,5,...} " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation2.svg" style="height:20px; width:112px" /> |
(2) |
for the collection of natural numbers greater than or equal to three, or
{...,-4,-2,0,2,4,...} " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation3.svg" style="height:20px; width:196px" /> |
(3) |
for the set of all even numbers.
In addition to the above notation, one can use so-called set builder notation to express sets and elements thereof. The general format for set builder notation is
{x:p(x)}, " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation4.svg" style="height:21px; width:64px" /> |
(4) |
where denotes an element and denotes a property satisfied by . () can also be expanded so as to indicate construction of a set which is a subset of some ambient set , e.g.,
{x in X:p(x)}. " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation5.svg" style="height:21px; width:97px" /> |
(5) |
It is worth noting is that the ":" in () and () is sometimes replaced by a vertical line, e.g.,
{x in X|p(x)}. " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation6.svg" style="height:22px; width:98px" /> |
(6) |
Also worth noting is that the sets in (), (), and () can all be rewritten in set builder notation as subsets of the set of integers, namely
{n in N:n<=3}" src="https://mathworld.wolfram.com/images/equations/Set/Inline15.svg" style="height:20px; width:95px" /> |
(7) |
||
{n in N:n>=3}" src="https://mathworld.wolfram.com/images/equations/Set/Inline18.svg" style="height:20px; width:95px" /> |
(8) |
||
{n in Z:n is even}," src="https://mathworld.wolfram.com/images/equations/Set/Inline21.svg" style="height:20px; width:123px" /> |
(9) |
respectively.
Other common notations related to set theory include , which is used to denote the set of maps from to where and are arbitrary sets. For example, an element of would be a map from the natural numbers to the set . Call such a function , then , , etc., are elements of , so call them , , etc. This now looks like a sequence of elements of , so sequences are really just functions from to . This notation is standard in mathematics and is frequently used in symbolic dynamics to denote sequence spaces.
Let , , and be sets. Then operation on these sets using the and operators is commutative
(10) |
(11) |
associative
(12) |
(13) |
and distributive
(14) |
(15) |
More generally, we have the infinite distributive laws
(16) |
(17) |
where runs through any index set . The proofs follow trivially from the definitions of union and intersection.
Courant, R. and Robbins, H. "The Algebra of Sets." Supplement to Ch. 2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.
Oxford, England: Oxford University Press, pp. 108-116, 1996.