EN

الرئيسية

الأخبار

صور

فيديو

صوت

أقلام

مفتاح

رشفات

مشكاة

منشور

اضاءات

قصص


المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية المجموعات :

Set

المؤلف:  Courant, R. and Robbins, H.

المصدر:  "The Algebra of Sets." Supplement to Ch. 2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.

الجزء والصفحة:  ...

17-1-2022

1992

Set

A set is a finite or infinite collection of objects in which order has no significance, and multiplicity is generally also ignored (unlike a list or multiset). Members of a set are often referred to as elements and the notation a in A is used to denote that a is an element of a set A. The study of sets and their properties is the object of set theory.

Older words for set include aggregate and set class. Russell also uses the unfortunate term manifold to refer to a set.

Historically, a single horizontal overbar was used to denote a set stripped of any structure besides order, and hence to represent the order type of the set. A double overbar indicated stripping the order from the set and hence represented the cardinal number of the set. This practice was begun by set theory founder Georg Cantor.

Symbols used to operate on sets include  intersection  (which means "and" or intersection), and  union  (which means "or" or union). The symbol emptyset is used to denote the set containing no elements, called the empty set.

There are a number of different notations related to the theory of sets. In the case of a finite set of elements, one often writes the collection inside curly braces, e.g.,

 A=<span style={1,2,3} " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation1.svg" style="height:20px; width:87px" />

(1)

for the set of natural numbers less than or equal to three. Similar notation can be used for infinite sets provided that ellipses are used to signify infiniteness, e.g.,

 B=<span style={3,4,5,...} " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation2.svg" style="height:20px; width:112px" />

(2)

for the collection of natural numbers greater than or equal to three, or

 C=<span style={...,-4,-2,0,2,4,...} " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation3.svg" style="height:20px; width:196px" />

(3)

for the set of all even numbers.

In addition to the above notation, one can use so-called set builder notation to express sets and elements thereof. The general format for set builder notation is

 <span style={x:p(x)}, " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation4.svg" style="height:21px; width:64px" />

(4)

where x denotes an element and p(x) denotes a property p satisfied by x. () can also be expanded so as to indicate construction of a set which is a subset of some ambient set X, e.g.,

 <span style={x in X:p(x)}. " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation5.svg" style="height:21px; width:97px" />

(5)

It is worth noting is that the ":" in () and () is sometimes replaced by a vertical line, e.g.,

 <span style={x in X|p(x)}. " src="https://mathworld.wolfram.com/images/equations/Set/NumberedEquation6.svg" style="height:22px; width:98px" />

(6)

Also worth noting is that the sets in (), (), and () can all be rewritten in set builder notation as subsets of the set Z of integers, namely

A = <span style={n in N:n<=3}" src="https://mathworld.wolfram.com/images/equations/Set/Inline15.svg" style="height:20px; width:95px" />

(7)

B = <span style={n in N:n>=3}" src="https://mathworld.wolfram.com/images/equations/Set/Inline18.svg" style="height:20px; width:95px" />

(8)

C = <span style={n in Z:n is even}," src="https://mathworld.wolfram.com/images/equations/Set/Inline21.svg" style="height:20px; width:123px" />

(9)

respectively.

Other common notations related to set theory include A^B, which is used to denote the set of maps from B to A where A and B are arbitrary sets. For example, an element of X^N would be a map from the natural numbers N to the set X. Call such a function f, then f(1)f(2), etc., are elements of X, so call them x_1x_2, etc. This now looks like a sequence of elements of X, so sequences are really just functions from N to X. This notation is standard in mathematics and is frequently used in symbolic dynamics to denote sequence spaces.

Let EF, and G be sets. Then operation on these sets using the  intersection  and  union  operators is commutative

 E intersection F=F intersection E

(10)

 E union F=F union E,

(11)

associative

 (E intersection F) intersection G=E intersection (F intersection G)

(12)

 (E union F) union G=E union (F union G),

(13)

and distributive

 (E intersection F) union G=(E union G) intersection (F union G)

(14)

 (E union F) intersection G=(E intersection G) union (F intersection G).

(15)

More generally, we have the infinite distributive laws

 A intersection ( union _(lambda in Lambda)B_lambda)= union _(lambda in Lambda)(A intersection B_lambda)

(16)

 A union ( intersection _(lambda in Lambda)B_lambda)= intersection _(lambda in Lambda)(A union B_lambda)

(17)

where lambda runs through any index set Lambda. The proofs follow trivially from the definitions of union and intersection.

 


REFERENCES

Courant, R. and Robbins, H. "The Algebra of Sets." Supplement to Ch. 2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.

 Oxford, England: Oxford University Press, pp. 108-116, 1996.

EN

تصفح الموقع بالشكل العمودي