تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
البايونات (Pions)
المؤلف: د/ محمد شحادة الدغمة و أ.د/ علي محمد جمعة
المصدر: الفيزياء النووية
الجزء والصفحة: ج2 ص 599
15-1-2022
3259
البايونات (Pions)
إكتشفت عائلة البايونات عام 1947 بواسطة فريق من العلماء. فقد تم تعريض مستحلب نووي محسن إلى الأشعة الكونية وذلك عند ارتفاعات عالية. لقد تم التعرف على الكثير من المسارات كالمبينة بالشكل (1) حيث يبين
الشكل (1)
الشكل أن جسيماً قد قطع مسافة معينة قبل أن يتحلل إلى جسيم ثاني ثم تحلل الثاني إلى جسيم آخر. ومن دراسة كثافة المسار يتضح لنا أن كتلة الجسيم الأول تبلغ عدة مئات من كتلة الإلكترون وعندما يتوقف هذا الجسيم يتحلل ليطلق الجيم الثاني الذي تبلغ كذلته ايضاً عدة مئات من كتلة الإلكترون. ويتحرك مسافة قدرها mm 0.5 قبل أن يتوقف مطلقاً الجيم الثالث الذي تبين الدراسات أنه عبارة عن الإلكترون. كما تبين هذه الدراسات أن الجسيم الأول هو البايون (π) الذي يتحلل إلى الجسيم الثاني وهو الميون (μ) الذي يتحلل إلى الإلكترون وتوجد ثلاثة أنواع من هذه البايونات وهي البايونات الموجبة والسالبة (±π) والبايون المتعادل (π0) لقد لوحظ أن الميون الناتج عن تحلل البايون ينطلق دائماً بنفس طاقة الحركة التي تساوي 4.2 م. أ. ف. كما ولم يلاحظ انطلاق فوتونات، ومن ثم فإن حفظ الطاقة والزخم يعنيان وجود جسيم آخر وهو النيوترينو، ومن ثم يتحلل البايون حسب العلاقة الاتية:
التي نفصلها فيما يلي
(1).............
كما ويتحلل الميون حسب العلاقة الاتية:
حيث:
(2)..............
حيث vμ النيوترينو الخاص بالميون، ويتحلل البايون السالب (-π) حسب العلاقة:
(3)..............
ويمكن قياس عمر النصف لكل من (±π) بواسطة تقنية زمن الطيران خلال المستحلب النووي. (كما وتستخدم هذه التقنية أيضاً لقياس عمر النصف للميون (±μ) إذ يمكن قياس التوزيع الزمني للفترة الزمنية التي تمضي بين إنتاج البايون (الميون) وفنائه (تحلله) إذ وجد أنها تأخذ شكل العلاقة الأسية المعروفة:
حيث τ عمر النصف، 0N ،N عدد الجسيمات الابتدائية والمتحللة.
نبين في الشكل (2) هندسية التجربة لقياس عمر النصف للبايونات المشحونة. يتم الحصول على شعاع من البايونات في المعمل بتوجيه شعاع من البروتونات بطاقة قدرها 385 م.أ.ف. الناتجة عن سيكلوترون نيفس (Nevis). نحوف هدف من البيريليوم، حيث تنتج تفاعلات مثل:
(4)..................
الشكل (2)
كما وينتج البايون السالب (-π) من تفاعلات مثل:
(5)................
يسقط شعاع البايونات على مغناطيس الانحناء الذي يقوم بتوجيه البايونات نحو أربعة كاشفات وميضية C4, C3, C2, C1 المبينة بالشكل، أما الكاشفات الثلاثة الأولى فتبين لحظة سقوط البايونات ومن ثم فهذه الكاشفات تكون متطابقة زمنياً Coincidence مع بعضها البعض وتقيس عدد الجسيمات (N0) ثم تسقط الجسيمات المارة من (C3) نحو الكاشف (C4) الذي يبلغ قطره ثماني بوصات والموضوع على بعد قدره (L) من (C3). ومن ثم فهذا الكاشف يقيس عدد الجسيمات التي وصلت إليه (N) بعد قطعها المسافة (L) وبمعرفة متوسط سرعة الجسيمات (طاقتها) ومتوسط طول المسار يمكن حساب (τ) بدقة. حيث وجد أن أفضل قيمة هي:
أما عمر النصف للبايون المتعادل (π0) فيمكن قياسه بتقنيات أخرى ووجد أن عمر النصف له:
وهو أقصر كثيراً من سابقيه.
ويتحلل حسب العلاقة:
(6) ...........
لقد اكتشف هذا البايون عام 1950 في الإشعاع الكوني. كما وأمكن إنتاجه أيضاً عام 1950 في المعمل باستخدام أشعة γ عالية الطاقة (330 م. أ .ف.) الناتجة عن السينكروترون في بيركلي حيث تستخدم هذه الأشعة لقذف أهداف من البيريليوم أو الهيدروجين، وتتج تفاعلات مثل:
(7)...................
أما أشعة γ الناتجة عن تحلل البايون (π0) فيمكن الكشف عنها باستخدام كاشفات الوميض.
ويمكن ليجاد كتلة البايون السالب (-π) عن طريق الذرة البايونية (Atom Pionic) إذ أن هذا البايون يمتص في المادة مكوناً الذرة البايونية. وعند دراسة أشعة _ X المنطلق من الذرة البايونية المثارة يمكن دراسة التركيب الإلكتروني لهذه الذرة ومن ثم معرفة كتلة البايون, كما وتوجد طريقة دقيقة لقياس كتلتي ±π حيث تبين هندسية هذه التجربة في الشكل (3).
الشكل (3)
تنتج البايونات (±π) عند قذف هدف من البيريليوم أو الكربون بواسطة البروتونات المعجلة في السايكلوترون. وتتحرك هذه البايونات في مسارين دائريين تحت تأثير المجال المغناطيسي (كما بالشكل). حيث يمكن الكشف عنهما بواسطة المستحلب النووي. ولتجنب الخطأ الوارد في تقدير شدة المجال المغناطيسي فإن المستحلب النووي يعرض في نفس الوقت للبروتونات المشتتة عن هدف من التنجستن يوضع في طريق البروتونات القادمة من السيكلوترون. وعندما تتساوى سرعة البروتونات المشتتة مع سرعة البايونات فإنها تصل إلى المستحلب برفقة البايونات. وبمقارنة مدى كل من البروتونات والبايونات في المستحلب يمكن تقدير كتلة البايونات وذلك بتطبيق القاعدة المعروفة التي تبين أنه عندما تتساوى سرعات الجسيمات فإن مديها تتناسب مع كتلها.
لقد قيست كتلة ±π (لأن كلاً منهما ضديد الآخر) فوجدت:
أما كتلة (π0) فقاس كما يلي:
تقذف -π الناتجة بإحدى التفاعلات السابقة (5، 7) على هدف من الهيدروجين السائل ومن ثم يحدث التفاعل التالي:
(8) .........
(تفاعل تبادل الشحنات).
وبمعرفة كتل π, P, n وطاقة حركة -π يمكن تقدير كتلة البايون المتعادل. كما ويمكن معرفة هذه الكتلة بدراسة التحلل (4) وقياس طاقة أشعة γ الناتجة، لقد وجد أن
ومن ثم نجد أن mπ0 تختلف عن ±mπ وقد يرجع ذلك إلى اختلاف تفاعلات هذه البايونات مع المادة.