تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Gossiping
المؤلف: Hedetniemi, S. M.; Hedetniemi, S. T.; and Liestman, A. L
المصدر: . "A Survey of Gossiping and Broadcasting in Communication Networks." Networks 18
الجزء والصفحة: ...
9-3-2022
2357
Gossiping and broadcasting are two problems of information dissemination described for a group of individuals connected by a communication network. In gossiping, every person in the network knows a unique item of information and needs to communicate it to everyone else. In broadcasting, one individual has an item of information which needs to be communicated to everyone else (Hedetniemi et al. 1988).
A popular formulation assumes there are people, each one of whom knows a scandal which is not known to any of the others. They communicate by telephone, and whenever two people place a call, they pass on to each other as many scandals as they know. How many calls are needed before everyone knows about all the scandals? Denoting the scandal-spreaders as , , , and , a solution for is given by {A,B}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline7.svg" style="height:22px; width:48px" />, {C,D}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline8.svg" style="height:22px; width:50px" />, {A,C}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline9.svg" style="height:22px; width:49px" />, {B,D}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline10.svg" style="height:22px; width:49px" />. The solution can then be generalized to by adding the pair {A,X}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline13.svg" style="height:22px; width:51px" /> to the beginning and end of the previous solution, i.e., {A,E}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline14.svg" style="height:22px; width:48px" />, {A,B}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline15.svg" style="height:22px; width:48px" />, {C,D}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline16.svg" style="height:22px; width:50px" />, {A,C}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline17.svg" style="height:22px; width:49px" />, {B,D}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline18.svg" style="height:22px; width:49px" />, {A,E}" src="https://mathworld.wolfram.com/images/equations/Gossiping/Inline19.svg" style="height:22px; width:48px" />.
Gossiping (which is also called total exchange or all-to-all communication) was originally introduced in discrete mathematics as a combinatorial problem in graph theory, but it also has applications in communications and distributed memory multiprocessor systems (Bermond et al. 1998). Moreover, the gossip problem is implicit in a large class of parallel computing problems, such as linear system solving, the discrete Fourier transform, and sorting. Surveys are given in Hedetniemi et al. (1988) and Hromkovic et al. (1995).
Let be the number of minimum calls necessary to complete gossiping among people, where any pair of people may call each other. Then , , , and
for . This result was proved by (Tijdeman 1971), as well as many others.
In the case of one-way communication ("polarized telephones"), e.g., where communication is done by letters or telegrams, the graph becomes a directed graph and the minimum number of calls becomes
for (Harary and Schwenk 1974).
Bermond, J.-C.; Gargano, L.; Rescigno, A. A.; and Vaccaro, U. "Fast Gossiping by Short Messages." SIAM J. Comput. 27, 917-941, 1998
.Harary, F. and Schwenk, A. J. "The Communication Problem on Graphs and Digraphs." J. Franklin Inst. 297, 491-495, 1974.
Hedetniemi, S. M.; Hedetniemi, S. T.; and Liestman, A. L. "A Survey of Gossiping and Broadcasting in Communication Networks." Networks 18, 319-349, 1988.
Hromkovic, J.; Klasing, R.; Monien, B.; and Peine, R. "Dissemination of Information in Interconnection Networks (Broadcasting and Gossiping)." In Combinatorial Network Theory (Ed. F. Hsu and D.-A. Du). Norwell, MA: Kluwer, pp. 125-212, 1995.
Tijdeman, R. "On a Telephone Problem." Nieuw Arch. Wisk. 19, 188-192, 1971.