1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Map Coloring

المؤلف:  Ball, W. W. R. and Coxeter, H. S. M

المصدر:  Mathematical Recreations and Essays, 13th ed. New York: Dover

الجزء والصفحة:  ...

29-3-2022

2747

Map Coloring

Given a map with genus g>0, Heawood showed in 1890 that the maximum number N_u of colors necessary to color a map (the chromatic number) on an unbounded surface is

N_u = |_1/2(7+sqrt(48g+1))_|

(1)

= |_1/2(7+sqrt(49-24chi))_|,

(2)

where |_x_| is the floor function, g is the genus, and chi is the Euler characteristic. This is the Heawood conjecture. In 1968, for any unbounded orientable surface other than the sphere (or equivalently, the plane) and any nonorientable surface other than the Klein bottle, N_u was shown to be not merely a maximum, but the actual number needed (Ringel and Youngs 1968).

When the four-color theorem was proven, the Heawood formula was shown to hold also for all orientable and nonorientable unbounded surfaces with the exception of the Klein bottle. For the Klein bottle only, the actual number of colors N needed is six--one less than N_u=7 (Franklin 1934; Saaty 1986, p. 45). The Möbius strip, which is a bounded surface, also requires 6 colors, while blind application of the Heawood formula (which is not applicable in this case) gives 7.

surface chi N_u N
Klein bottle 0 7 6
Möbius strip 0 7 6
plane 2 4 4
projective plane 1 6 6
sphere 2 4 4
torus 0 7 7

REFERENCES

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 237-238, 1987.

Barnette, D. Map Coloring, Polyhedra, and the Four-Color Problem. Washington, DC: Math. Assoc. Amer., 1983.

Franklin, P. "A Six Colour Problem." J. Math. Phys. 13, 363-369, 1934.

Franklin, P. The Four-Color Problem. New York: Scripta Mathematica, Yeshiva College, 1941.

Ore, Ø. The Four-Color Problem. New York: Academic Press, 1967.

Ringel, G. and Youngs, J. W. T. "Solution of the Heawood Map-Coloring Problem." Proc. Nat. Acad. Sci. USA 60, 438-445, 1968.

Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, 1986.

EN

تصفح الموقع بالشكل العمودي